IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i5d10.1038_s41558-020-0746-8.html
   My bibliography  Save this article

Agricultural risks from changing snowmelt

Author

Listed:
  • Yue Qin

    (The Ohio State University
    The Ohio State University
    University of California, Irvine)

  • John T. Abatzoglou

    (University of California, Merced
    University of Idaho)

  • Stefan Siebert

    (University of Göttingen)

  • Laurie S. Huning

    (University of California, Irvine)

  • Amir AghaKouchak

    (University of California, Irvine
    University of California, Irvine)

  • Justin S. Mankin

    (Dartmouth College
    Dartmouth College
    Lamont–Doherty Earth Observatory of Columbia University, Palisades)

  • Chaopeng Hong

    (University of California, Irvine)

  • Dan Tong

    (University of California, Irvine)

  • Steven J. Davis

    (University of California, Irvine
    University of California, Irvine)

  • Nathaniel D. Mueller

    (Colorado State University
    Colorado State University)

Abstract

Snowpack stores cold-season precipitation to meet warm-season water demand. Climate change threatens to disturb this balance by altering the fraction of precipitation falling as snow and the timing of snowmelt, which may have profound effects on food production in basins where irrigated agriculture relies heavily on snowmelt runoff. Here, we analyse global patterns of snowmelt and agricultural water uses to identify regions and crops that are most dependent on snowmelt water resources. We find hotspots primarily in high-mountain Asia (the Tibetan Plateau), Central Asia, western Russia, western US and the southern Andes. Using projections of sub-annual runoff under warming scenarios, we identify the basins most at risk from changing snowmelt patterns, where up to 40% of irrigation demand must be met by new alternative water supplies under a 4 °C warming scenario. Our results highlight basins and crops where adaptation of water management and agricultural systems may be especially critical in a changing climate.

Suggested Citation

  • Yue Qin & John T. Abatzoglou & Stefan Siebert & Laurie S. Huning & Amir AghaKouchak & Justin S. Mankin & Chaopeng Hong & Dan Tong & Steven J. Davis & Nathaniel D. Mueller, 2020. "Agricultural risks from changing snowmelt," Nature Climate Change, Nature, vol. 10(5), pages 459-465, May.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:5:d:10.1038_s41558-020-0746-8
    DOI: 10.1038/s41558-020-0746-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0746-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0746-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnard, David M. & Green, Timothy R. & Mankin, Kyle R. & DeJonge, Kendall C. & Rhoades, Charles C. & Kampf, Stephanie K. & Giovando, Jeremy & Wilkins, Mike J. & Mahood, Adam L. & Sears, Megan G. & Co, 2023. "Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States," Agricultural Water Management, Elsevier, vol. 286(C).
    2. Jesus Arellano‐Gonzalez & Frances C. Moore, 2020. "Intertemporal Arbitrage of Water and Long‐Term Agricultural Investments: Drought, Groundwater Banking, and Perennial Cropping Decisions in California," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1368-1382, October.
    3. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Mehrabi, Zia & Delzeit, Ruth & Ignaciuk, Adriana & Levers, Christian & Braich, Ginni & Bajaj, Kushank & Amo-Aidoo, Araba & Anderson, Weston & Balgah, Roland A. & Benton, Tim G. & Chari, Martin M. & El, 2022. "Research priorities for global food security under extreme events," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(7), pages 756-766.
    5. Hrozencik, Aaron & Gardner, Grant & Potter, Nicholas & Wallander, Steven, 2023. "Irrigation Organizations: Groundwater Management," USDA Miscellaneous 335424, United States Department of Agriculture.
    6. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    7. Potter, Nicholas A. & Hrozencik, R. Aaron & Wallander, Steven, 2023. "Irrigation Organizations: Water Inflows and Outflows," Economic Brief 338976, United States Department of Agriculture, Economic Research Service.
    8. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Liang Ma & Shannon R. Conradie & Christopher L. Crawford & Alexandra S. Gardner & Michael R. Kearney & Ilya M. D. Maclean & Andrew E. McKechnie & Chun-Rong Mi & Rebecca A. Senior & David S. Wilcove, 2023. "Global patterns of climate change impacts on desert bird communities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    11. M. Mortezapour & B. Menounos & P. L. Jackson & A. R. Erler, 2022. "Future Snow Changes over the Columbia Mountains, Canada, using a Distributed Snow Model," Climatic Change, Springer, vol. 172(1), pages 1-24, May.
    12. R. R. McCrary & L. O. Mearns & M. Hughes & S. Biner & M. S. Bukovsky, 2022. "Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution," Climatic Change, Springer, vol. 170(3), pages 1-25, February.
    13. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    14. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Grumstrup, Ethan & Rollins, Kimberly S. & Pram, Kym & Koirala, Samjhana, 2021. "The Effect of Climate Change on Agricultural Production with Priority Water Rights," 2021 Annual Meeting, August 1-3, Austin, Texas 314068, Agricultural and Applied Economics Association.
    16. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:5:d:10.1038_s41558-020-0746-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.