IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3646-d175024.html
   My bibliography  Save this article

Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming

Author

Listed:
  • Jianjian He

    (College of Environment and Planning, Henan University, Kaifeng 475004, China)

  • Pengyan Zhang

    (College of Environment and Planning, Henan University, Kaifeng 475004, China)

  • Wenlong Jing

    (Guangzhou Institute of Geography, Guangzhou 510070, China
    Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou 510070, China
    Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China)

  • Yuhang Yan

    (College of Environment and Planning, Henan University, Kaifeng 475004, China)

Abstract

The net ecosystem productivity ( NEP ) of drainage basins plays an important role in maintaining the carbon balance of those ecosystems. In this study, the modified CASA (Carnegie Ames Stanford Approach) model and a soil microbial respiration model were used to estimate net primary productivity ( NPP ) and NEP of the Yellow River Basin’s (YRB) vegetation in the terrestrial ecosystem (excluding rivers, floodplain lakes and other freshwater ecosystems) from 1982 to 2015. After analyzing the spatiotemporal variations in the NEP using slope analysis, the coefficient of variation, and the Hurst exponent, precipitation was identified as the main factor limiting vegetation growth in the YRB. Hence, precipitation was treated as the control variable and a second-order partial correlation method was used to determine the correlation between diurnal asymmetric warming and the YRB’s NEP . The results indicate that: (i) diurnal asymmetric warming occurred in the YRB from 1982 to 2015, with nighttime warming (T min ) being 1.50 times that of daytime warming (T max ). There is a significant correlation between variations in NPP and diurnal warming; (ii) the YRB’s NEP are characterized by upward fluctuations in terms of temporal variations, large differences between the various vegetation types, high values in the western and southeastern regions but low values in the northern region in terms of spatial distribution, overall relative stability in the YRB’s vegetation cover, and changes in the same direction being more dominant than those in the opposite direction (although the former is not sustained); and (iii) positive correlations between the NEP and nighttime and daytime warming are approximately 48.37% and 67.51% for the YRB, respectively, with variations in nighttime temperatures having more extensive impacts on vegetation cover.

Suggested Citation

  • Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3646-:d:175024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    2. Wise, Marshall & Dooley, James & Luckow, Patrick & Calvin, Katherine & Kyle, Page, 2014. "Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century," Applied Energy, Elsevier, vol. 114(C), pages 763-773.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Matthew Reeves & Adam Moreno & Karen Bagne & Steven Running, 2014. "Estimating climate change effects on net primary production of rangelands in the United States," Climatic Change, Springer, vol. 126(3), pages 429-442, October.
    5. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    6. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    7. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    8. Andrew R. Solow, 2013. "A call for peace on climate and conflict," Nature, Nature, vol. 497(7448), pages 179-180, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    2. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    3. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    4. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
    5. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    6. Song, Xiangnan & Lu, Yujie & Shen, Liyin & Shi, Xunpeng, 2018. "Will China's building sector participate in emission trading system? Insights from modelling an owner's optimal carbon reduction strategies," Energy Policy, Elsevier, vol. 118(C), pages 232-244.
    7. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    8. Jiancheng Qin & Lei Gao & Weihu Tu & Jing He & Jingzhe Tang & Shuying Ma & Xiaoyang Zhao & Xingzhe Zhu & Karthikeyan Brindha & Hui Tao, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China," Energies, MDPI, vol. 15(15), pages 1-18, July.
    9. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    10. Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    11. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    12. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    13. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    14. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    15. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    16. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    17. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    18. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    19. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    20. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3646-:d:175024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.