IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i4d10.1007_s10668-023-03077-4.html
   My bibliography  Save this article

An extended STIRPAT model and forecast of carbon emission based on green consumption behaviors: evidence from China

Author

Listed:
  • Cisheng Wu

    (Hefei University of Technology)

  • Manman Ge

    (Hefei University of Technology)

  • Zhiyuan Huang

    (Hefei University of Technology)

  • Linchuan Wang

    (Hefei University of Technology)

  • Teng Liu

    (Hefei University of Technology)

Abstract

An extended STIRPAT model was constructed to explore the impact of green consumption behaviors on carbon emission. Based on the panel data of 30 provinces in China from 2005 to 2019, this paper analyzed the effect of green consumption behaviors, regional population size, economic development level and technological level on carbon emission, and then forecasted the carbon emission in eastern, central and western China from 2020 to 2035. The results demonstrate that carbon emission increases with the expansion of population size; green consumption behaviors have a significant moderating effect on carbon emission and alleviate the pressure of population growth on carbon emission; instead of following the environmental Kuznets curve, the trend of carbon emission shows an inverted “N” curve with economic growth; There is a positive correlation between technological progress and carbon emission; the increase in the level of consumers’ expenditure and the ratio of the secondary industry output value over the total GDP lead to an increase in carbon emission, while the improvement of the urbanization level reduces carbon emission. Policy implications and prospects are also discussed.

Suggested Citation

  • Cisheng Wu & Manman Ge & Zhiyuan Huang & Linchuan Wang & Teng Liu, 2024. "An extended STIRPAT model and forecast of carbon emission based on green consumption behaviors: evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8955-8977, April.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03077-4
    DOI: 10.1007/s10668-023-03077-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03077-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03077-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    2. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Yiping Liu & Yuling Han, 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    5. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    6. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    7. Francesco Testa & Gaia Pretner & Roberta Iovino & Guia Bianchi & Sara Tessitore & Fabio Iraldo, 2021. "Drivers to green consumption: a systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4826-4880, April.
    8. Kumar, Bipul & Manrai, Ajay K. & Manrai, Lalita A., 2017. "Purchasing behaviour for environmentally sustainable products: A conceptual framework and empirical study," Journal of Retailing and Consumer Services, Elsevier, vol. 34(C), pages 1-9.
    9. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunahan Haciimamoglu & Oguzhan Sungur & Korkmaz Yildirim & Mustafa Yapar, 2025. "Rethinking the Climate Change–Inequality Nexus: The Role of Wealth Inequality, Economic Growth, and Renewable Energy in CO 2 Emissions," Sustainability, MDPI, vol. 17(8), pages 1-19, April.
    2. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    3. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    4. Chien, FengSheng, 2022. "How renewable energy and non-renewable energy affect environmental excellence in N-11 economies?," Renewable Energy, Elsevier, vol. 196(C), pages 526-534.
    5. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    6. Omri, Anis, 2018. "Entrepreneurship, sectoral outputs and environmental improvement: International evidence," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 46-55.
    7. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    8. Sæther, Simen Rostad, 2021. "Climate policy choices: An empirical study of the effects on the OECD and BRICS power sector emission intensity," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 499-515.
    9. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    10. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    11. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    12. Nghiem, Son & Tran, Bach & Afoakwah, Clifford & Byrnes, Joshua & Scuffham, Paul, 2021. "Wealthy, healthy and green: Are we there yet?," World Development, Elsevier, vol. 147(C).
    13. Ahmed, Khalid, 2017. "Revisiting the role of financial development for energy-growth-trade nexus in BRICS economies," Energy, Elsevier, vol. 128(C), pages 487-495.
    14. Théophile AZOMAHOU & NGUYEN Van Phu, 2001. "Economic Growth and CO2 Emissions: a Nonparametric Approach," Working Papers of BETA 2001-01, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    15. Chinazaekpere Nwani & Andrew Adewale Alola & Chimobi Philip Omoke & Bosede Ngozi Adeleye & Festus Victor Bekun, 2022. "Responding to the environmental effects of remittances and trade liberalization in net-importing economies: the role of renewable energy in Sub-Saharan Africa," Economic Change and Restructuring, Springer, vol. 55(4), pages 2631-2661, November.
    16. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    17. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    18. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    19. Awan, Ashar & Alnour, Mohammed & Jahanger, Atif & Onwe, Joshua Chukwuma, 2022. "Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?," Technology in Society, Elsevier, vol. 71(C).
    20. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03077-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.