IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32631-3.html
   My bibliography  Save this article

Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2

Author

Listed:
  • Yao Zhang

    (Peking University
    Lawrence Berkeley National Laboratory
    Policy and Management, UC Berkeley)

  • Pierre Gentine

    (Columbia University)

  • Xiangzhong Luo

    (National University of Singapore)

  • Xu Lian

    (Peking University
    Columbia University)

  • Yanlan Liu

    (The Ohio State University)

  • Sha Zhou

    (Beijing Normal University)

  • Anna M. Michalak

    (Carnegie Institution for Science)

  • Wu Sun

    (Carnegie Institution for Science)

  • Joshua B. Fisher

    (Chapman University)

  • Shilong Piao

    (Peking University
    Chinese Academy of Sciences)

  • Trevor F. Keenan

    (Lawrence Berkeley National Laboratory
    Policy and Management, UC Berkeley)

Abstract

Water availability plays a critical role in shaping terrestrial ecosystems, particularly in low- and mid-latitude regions. The sensitivity of vegetation growth to precipitation strongly regulates global vegetation dynamics and their responses to drought, yet sensitivity changes in response to climate change remain poorly understood. Here we use long-term satellite observations combined with a dynamic statistical learning approach to examine changes in the sensitivity of vegetation greenness to precipitation over the past four decades. We observe a robust increase in precipitation sensitivity (0.624% yr−1) for drylands, and a decrease (−0.618% yr−1) for wet regions. Using model simulations, we show that the contrasting trends between dry and wet regions are caused by elevated atmospheric CO2 (eCO2). eCO2 universally decreases the precipitation sensitivity by reducing leaf-level transpiration, particularly in wet regions. However, in drylands, this leaf-level transpiration reduction is overridden at the canopy scale by a large proportional increase in leaf area. The increased sensitivity for global drylands implies a potential decrease in ecosystem stability and greater impacts of droughts in these vulnerable ecosystems under continued global change.

Suggested Citation

  • Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32631-3
    DOI: 10.1038/s41467-022-32631-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32631-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32631-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanlan Liu & Mukesh Kumar & Gabriel G. Katul & Xue Feng & Alexandra G. Konings, 2020. "Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration," Nature Climate Change, Nature, vol. 10(7), pages 691-695, July.
    2. Zaichun Zhu & Shilong Piao & Ranga B. Myneni & Mengtian Huang & Zhenzhong Zeng & Josep G. Canadell & Philippe Ciais & Stephen Sitch & Pierre Friedlingstein & Almut Arneth & Chunxiang Cao & Lei Cheng &, 2016. "Greening of the Earth and its drivers," Nature Climate Change, Nature, vol. 6(8), pages 791-795, August.
    3. Vincent Humphrey & Jakob Zscheischler & Philippe Ciais & Lukas Gudmundsson & Stephen Sitch & Sonia I. Seneviratne, 2018. "Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage," Nature, Nature, vol. 560(7720), pages 628-631, August.
    4. Yanlan Liu & Mukesh Kumar & Gabriel G. Katul & Amilcare Porporato, 2019. "Reduced resilience as an early warning signal of forest mortality," Nature Climate Change, Nature, vol. 9(11), pages 880-885, November.
    5. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    6. Yuting Yang & Michael L. Roderick & Shulei Zhang & Tim R. McVicar & Randall J. Donohue, 2019. "Hydrologic implications of vegetation response to elevated CO2 in climate projections," Nature Climate Change, Nature, vol. 9(1), pages 44-48, January.
    7. Liming Zhou & Yuhong Tian & Ranga B. Myneni & Philippe Ciais & Sassan Saatchi & Yi Y. Liu & Shilong Piao & Haishan Chen & Eric F. Vermote & Conghe Song & Taehee Hwang, 2014. "Widespread decline of Congo rainforest greenness in the past decade," Nature, Nature, vol. 509(7498), pages 86-90, May.
    8. Travis E. Huxman & Melinda D. Smith & Philip A. Fay & Alan K. Knapp & M. Rebecca Shaw & Michael E. Loik & Stanley D. Smith & David T. Tissue & John C. Zak & Jake F. Weltzin & William T. Pockman & Osva, 2004. "Convergence across biomes to a common rain-use efficiency," Nature, Nature, vol. 429(6992), pages 651-654, June.
    9. Mark A. Adams & Thomas N. Buckley & Dan Binkley & Mathias Neumann & Tarryn L. Turnbull, 2021. "CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Jiangpeng Cui & Shilong Piao & Chris Huntingford & Xuhui Wang & Xu Lian & Amulya Chevuturi & Andrew G. Turner & Gabriel J. Kooperman, 2020. "Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    11. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    12. Xuhui Wang & Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Ranga B. Myneni & Peter Cox & Martin Heimann & John Miller & Shushi Peng & Tao Wang & Hui Yang & Anping Chen, 2014. "A two-fold increase of carbon cycle sensitivity to tropical temperature variations," Nature, Nature, vol. 506(7487), pages 212-215, February.
    13. Jack A. Morgan & Daniel R. LeCain & Elise Pendall & Dana M. Blumenthal & Bruce A. Kimball & Yolima Carrillo & David G. Williams & Jana Heisler-White & Feike A. Dijkstra & Mark West, 2011. "C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland," Nature, Nature, vol. 476(7359), pages 202-205, August.
    14. Trevor F. Keenan & David Y. Hollinger & Gil Bohrer & Danilo Dragoni & J. William Munger & Hans Peter Schmid & Andrew D. Richardson, 2013. "Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise," Nature, Nature, vol. 499(7458), pages 324-327, July.
    15. Wenmin Zhang & Martin Brandt & Josep Penuelas & Françoise Guichard & Xiaoye Tong & Feng Tian & Rasmus Fensholt, 2019. "Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    16. Benjamin Poulter & David Frank & Philippe Ciais & Ranga B. Myneni & Niels Andela & Jian Bi & Gregoire Broquet & Josep G. Canadell & Frederic Chevallier & Yi Y. Liu & Steven W. Running & Stephen Sitch , 2014. "Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle," Nature, Nature, vol. 509(7502), pages 600-603, May.
    17. T. F. Keenan & X. Luo & M. G. Kauwe & B. E. Medlyn & I. C. Prentice & B. D. Stocker & N. G. Smith & C. Terrer & H. Wang & Y. Zhang & S. Zhou, 2022. "Retraction Note: A constraint on historic growth in global photosynthesis due to increasing CO2," Nature, Nature, vol. 606(7913), pages 420-420, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruikang Tian & Liang Liu & Jianghua Zheng & Jianhao Li & Wanqiang Han & Yujia Liu, 2024. "Combined Effects of Meteorological Factors, Terrain, and Greenhouse Gases on Vegetation Phenology in Arid Areas of Central Asia from 1982 to 2021," Land, MDPI, vol. 13(2), pages 1-21, February.
    2. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    4. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    5. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    7. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Julien Boé, 2021. "The physiological effect of CO2 on the hydrological cycle in summer over Europe and land-atmosphere interactions," Climatic Change, Springer, vol. 167(1), pages 1-20, July.
    9. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    10. Tian, Xin & Dong, Jianzhi & Jin, Shuangyan & He, Hai & Yin, Hao & Chen, Xi, 2023. "Climate change impacts on regional agricultural irrigation water use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    12. T. F. Keenan & X. Luo & B. D. Stocker & M. G. Kauwe & B. E. Medlyn & I. C. Prentice & N. G. Smith & C. Terrer & H. Wang & Y. Zhang & S. Zhou, 2023. "A constraint on historic growth in global photosynthesis due to rising CO2," Nature Climate Change, Nature, vol. 13(12), pages 1376-1381, December.
    13. Chen, Zheng & Liu, Jieyu & Li, Li & Wu, Yongping & Feng, Guolin & Qian, Zhonghua & Sun, Gui-Quan, 2022. "Effects of climate change on vegetation patterns in Hulun Buir Grassland," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    14. Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Yao, Yuxia & Liao, Xingliang & Xiao, Junlan & He, Qiulan & Shi, Weiyu, 2023. "The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Kai Duan & Ge Sun & Yang Zhang & Khairunnisa Yahya & Kai Wang & James M. Madden & Peter V. Caldwell & Erika C. Cohen & Steven G. McNulty, 2017. "Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States," Climatic Change, Springer, vol. 140(2), pages 259-272, January.
    17. King, David A. & Bachelet, Dominique M. & Symstad, Amy J. & Ferschweiler, Ken & Hobbins, Michael, 2015. "Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA," Ecological Modelling, Elsevier, vol. 297(C), pages 86-97.
    18. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    19. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    20. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32631-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.