IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p881-d835466.html
   My bibliography  Save this article

Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China

Author

Listed:
  • Shan Jiang

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China
    These authors contributed equally to this work.)

  • Jian Zhou

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China
    These authors contributed equally to this work.)

  • Guojie Wang

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China)

  • Qigen Lin

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China)

  • Ziyan Chen

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China)

  • Yanjun Wang

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China)

  • Buda Su

    (Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Disaster Risk Management, School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China)

Abstract

Drought seriously restricts people’s lives and social–economic development. An accurate understanding of the evolution of drought characteristics and future changes in cultivated land exposure can reduce the risk of drought. There is evidence that increased CO 2 concentrations alter the physiological properties of vegetation and, thus, affect drought evolution. In this study, both changes and differences in drought (i.e., characteristics and cropland exposure) with and without the CO 2 effect over the arid region of China are investigated, using seven CMIP6 outputs and land-use under seven shared-socioeconomic-pathway (SSP)-based scenarios. The results show that: (1) drier conditions will be more severe in 2015–2100 under SSP5-8.5, especially if the CO 2 effect is neglected. Moreover, the CO 2 effect will increase with increasing emission concentrations; (2) drought intensity will be greater than in the baseline period (1995–2014, approximately −1.45) but weaker than that without the CO 2 effect under all scenarios; (3) drought frequency will decrease, and will generally decline faster if the CO 2 effect is not considered; (4) drought duration will increase and the difference between the presence and absence of the CO 2 effect will always be smallest under SSP1-1.9 and largest under SSP5-8.5; (5) drought acreage will also increase, and neglecting the CO 2 effect is always higher than that considering CO 2 . The difference between the two algorithms will increase with time; and (6) cropland exposure to drought will increase, and can even reach 669,000 km 2 and 524,000 km 2 considering and ignoring the CO 2 effect, respectively. Our findings suggest that ignoring CO 2 in drought evaluations will result in significant overestimations of drought projections.

Suggested Citation

  • Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:881-:d:835466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai & Tianbao Zhao, 2017. "Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes," Climatic Change, Springer, vol. 144(3), pages 519-533, October.
    2. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    4. Kimberly A. Novick & Darren L. Ficklin & Paul C. Stoy & Christopher A. Williams & Gil Bohrer & A. Christopher Oishi & Shirley A. Papuga & Peter D. Blanken & Asko Noormets & Benjamin N. Sulman & Russel, 2016. "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes," Nature Climate Change, Nature, vol. 6(11), pages 1023-1027, November.
    5. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    6. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    7. Yuting Yang & Michael L. Roderick & Shulei Zhang & Tim R. McVicar & Randall J. Donohue, 2019. "Hydrologic implications of vegetation response to elevated CO2 in climate projections," Nature Climate Change, Nature, vol. 9(1), pages 44-48, January.
    8. Tianbao Zhao & Aiguo Dai, 2017. "Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes," Climatic Change, Springer, vol. 144(3), pages 535-548, October.
    9. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    10. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    11. Qingqing Li & Yanping Cao & Shuling Miao & Xinhe Huang, 2022. "Spatiotemporal Characteristics of Drought and Wet Events and Their Impacts on Agriculture in the Yellow River Basin," Land, MDPI, vol. 11(4), pages 1-20, April.
    12. Wei Shangguan & Ruqing Zhang & Lu Li & Shulei Zhang & Ye Zhang & Feini Huang & Jianduo Li & Wei Liu, 2022. "Assessment of Agricultural Drought Based on Reanalysis Soil Moisture in Southern China," Land, MDPI, vol. 11(4), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    2. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
    4. Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
    5. Panagiotis D. Oikonomou & Christos A. Karavitis & Demetrios E. Tsesmelis & Elpida Kolokytha & Rodrigo Maia, 2020. "Drought Characteristics Assessment in Europe over the Past 50 Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4757-4772, December.
    6. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    7. Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    9. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    10. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    11. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    12. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Jinmeng Zhang & Shiqiao Zhang & Min Cheng & Hong Jiang & Xiuying Zhang & Changhui Peng & Xuehe Lu & Minxia Zhang & Jiaxin Jin, 2018. "Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
    14. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.
    15. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    16. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    17. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    19. Haibo Lu & Zhangcai Qin & Shangrong Lin & Xiuzhi Chen & Baozhang Chen & Bin He & Jing Wei & Wenping Yuan, 2022. "Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    20. Jinping Liu & Mingzhe Li & Renzhi Li & Masoud Jafari Shalamzari & Yanqun Ren & Esmaeil Silakhori, 2025. "Comprehensive Assessment of Drought Susceptibility Using Predictive Modeling, Climate Change Projections, and Land Use Dynamics for Sustainable Management," Land, MDPI, vol. 14(2), pages 1-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:881-:d:835466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.