IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i15d10.1007_s11269-020-02688-0.html
   My bibliography  Save this article

Drought Characteristics Assessment in Europe over the Past 50 Years

Author

Listed:
  • Panagiotis D. Oikonomou

    (University of Vermont
    University of Vermont)

  • Christos A. Karavitis

    (Agricultural University of Athens)

  • Demetrios E. Tsesmelis

    (Agricultural University of Athens)

  • Elpida Kolokytha

    (Aristotle University of Thessaloniki)

  • Rodrigo Maia

    (University of Porto)

Abstract

The questions of scale, limit, and areal extent are central points for any drought assessment effort. Drought indices, such as the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), are assisting to demarcate drought characteristics and spatial extent. The current approach utilizes the E-OBS gridded dataset's hydro-climatic parameters (precipitation, minimum and maximum temperature) for applying SPI and SPEI on a Pan-European scale for a detail drought assessment during the 1969–2018 period. The two indices are estimated for the 6 and 12-month scales. In this effort, drought is defined as an event that has index value less than minus 1.5 for at least three consecutive months. Based on this, drought characteristics (frequency, duration, and severity) are derived. The results are displayed in 5-year windows and they are also assessed against independently recorded droughts as occurred. Overall, it may be reported that there has been little change in drought characteristics over the past 50 years in Europe. Furthermore, given the variety of climatic locales on a continental level, the 6 and 12-month time scales for both indices may offer an improvement on drought critical areas identification, threshold definitions, and comparability.

Suggested Citation

  • Panagiotis D. Oikonomou & Christos A. Karavitis & Demetrios E. Tsesmelis & Elpida Kolokytha & Rodrigo Maia, 2020. "Drought Characteristics Assessment in Europe over the Past 50 Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4757-4772, December.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02688-0
    DOI: 10.1007/s11269-020-02688-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02688-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02688-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    3. Rodrigo Maia & Eduardo Vivas & Ricardo Serralheiro & Mário Carvalho, 2015. "Socioeconomic Evaluation of Drought Effects. Main Principles and Application to Guadiana and Algarve Case Studies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 575-588, January.
    4. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    5. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    6. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    7. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Song & Shisong Cao & Mingyi Du & You Mo & Suju Li, 2022. "Investigation of compound drought risk and driving factors in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1365-1391, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    2. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
    3. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    4. Jenq-Tzong Shiau & Jia-Wei Lin, 2016. "Clustering Quantile Regression-Based Drought Trends in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1053-1069, February.
    5. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    6. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    7. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    8. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    9. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    10. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    11. Margaret Sugg & Jennifer Runkle & Ronnie Leeper & Hannah Bagli & Andrew Golden & Leah Hart Handwerger & Tatiana Magee & Camila Moreno & Rhiannon Reed-Kelly & Michelle Taylor & Sarah Woolard, 2020. "A scoping review of drought impacts on health and society in North America," Climatic Change, Springer, vol. 162(3), pages 1177-1195, October.
    12. Zheng Li & Tao Zhou & Xiang Zhao & Kaicheng Huang & Shan Gao & Hao Wu & Hui Luo, 2015. "Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    13. Gregory McCabe & David Wolock, 2015. "Increasing Northern Hemisphere water deficit," Climatic Change, Springer, vol. 132(2), pages 237-249, September.
    14. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    15. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    16. Huynh, Thanh D. & Nguyen, Thu Ha & Truong, Cameron, 2020. "Climate risk: The price of drought," Journal of Corporate Finance, Elsevier, vol. 65(C).
    17. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    18. Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
    19. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    20. Liping Jia & Yi He & Wanqing Liu & Yaru Zhang & Yanlin Li, 2023. "Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China," Sustainability, MDPI, vol. 15(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02688-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.