IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58253-z.html
   My bibliography  Save this article

A pronounced decline in northern vegetation resistance to flash droughts from 2001 to 2022

Author

Listed:
  • Miao Zhang

    (Nanjing University of Information Science and Technology
    Chinese Academy of Sciences
    Nanjing University of Information Science and Technology
    University of California)

  • Xing Yuan

    (Nanjing University of Information Science and Technology
    Chinese Academy of Sciences
    Nanjing University of Information Science and Technology)

  • Zhenzhong Zeng

    (Southern University of Science and Technology
    Eastern Institute for Advanced Study)

  • Ming Pan

    (University of California)

  • Peili Wu

    (Met Office Hadley Centre)

  • Jingfeng Xiao

    (University of New Hampshire)

  • Trevor F. Keenan

    (University of California
    Lawrence Berkeley National Laboratory)

Abstract

Climate change has led to the transition of droughts into rapid and intensified phenomena known as flash droughts, presenting considerable challenges for risk management, particularly concerning their impact on ecosystem productivity. Quantifying the ecosystem’s capacity to maintain productivity during flash droughts, referred to as ecosystem resistance, is crucial to assess drought impacts. However, it remains uncertain how the resistance of ecosystem productivity to flash drought changes over time. Here we show that vegetation resistance to flash droughts declines by up to 27% (±5%) over the Northern Hemisphere hotspots during 2001-2022, including eastern Asia, western North America, and northern Europe. The notable decline in vegetation resistance is mainly attributed to increased vapour pressure deficit and temperature, and enhanced vegetation structural sensitivity to water availability. Flash droughts pose higher ecological risks than slowly-developing droughts during the growing seasons, where ecosystem productivity experiences faster decline rates with a shorter response time. Our results underscore the limited ecosystem capacity to resist flash droughts under climate change.

Suggested Citation

  • Miao Zhang & Xing Yuan & Zhenzhong Zeng & Ming Pan & Peili Wu & Jingfeng Xiao & Trevor F. Keenan, 2025. "A pronounced decline in northern vegetation resistance to flash droughts from 2001 to 2022," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58253-z
    DOI: 10.1038/s41467-025-58253-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58253-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58253-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meng Zhao & Geruo A & Yanlan Liu & Alexandra G. Konings, 2022. "Evapotranspiration frequently increases during droughts," Nature Climate Change, Nature, vol. 12(11), pages 1024-1030, November.
    2. Angeline G. Pendergrass & Gerald A. Meehl & Roger Pulwarty & Mike Hobbins & Andrew Hoell & Amir AghaKouchak & Céline J. W. Bonfils & Ailie J. E. Gallant & Martin Hoerling & David Hoffmann & Laurna Kaa, 2020. "Flash droughts present a new challenge for subseasonal-to-seasonal prediction," Nature Climate Change, Nature, vol. 10(3), pages 191-199, March.
    3. David Gampe & Jakob Zscheischler & Markus Reichstein & Michael O’Sullivan & William K. Smith & Stephen Sitch & Wolfgang Buermann, 2021. "Increasing impact of warm droughts on northern ecosystem productivity over recent decades," Nature Climate Change, Nature, vol. 11(9), pages 772-779, September.
    4. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Auke M. Woude & Wouter Peters & Emilie Joetzjer & Sébastien Lafont & Gerbrand Koren & Philippe Ciais & Michel Ramonet & Yidi Xu & Ana Bastos & Santiago Botía & Stephen Sitch & Remco Kok & Tobias Kneue, 2023. "Author Correction: Temperature extremes of 2022 reduced carbon uptake by forests in Europe," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    7. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Taylor Smith & Dominik Traxl & Niklas Boers, 2022. "Empirical evidence for recent global shifts in vegetation resilience," Nature Climate Change, Nature, vol. 12(5), pages 477-484, May.
    9. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    10. Zaichun Zhu & Shilong Piao & Ranga B. Myneni & Mengtian Huang & Zhenzhong Zeng & Josep G. Canadell & Philippe Ciais & Stephen Sitch & Pierre Friedlingstein & Almut Arneth & Chunxiang Cao & Lei Cheng &, 2016. "Greening of the Earth and its drivers," Nature Climate Change, Nature, vol. 6(8), pages 791-795, August.
    11. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    12. Giovanni Forzieri & Vasilis Dakos & Nate G. McDowell & Alkama Ramdane & Alessandro Cescatti, 2022. "Emerging signals of declining forest resilience under climate change," Nature, Nature, vol. 608(7923), pages 534-539, August.
    13. L. Samaniego & R. Kumar & L. Breuer & A. Chamorro & M. Flörke & I. G. Pechlivanidis & D. Schäfer & H. Shah & T. Vetter & M. Wortmann & X. Zeng, 2017. "Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins," Climatic Change, Springer, vol. 141(3), pages 435-449, April.
    14. Jordan I. Christian & Jeffrey B. Basara & Eric D. Hunt & Jason A. Otkin & Jason C. Furtado & Vimal Mishra & Xiangming Xiao & Robb M. Randall, 2021. "Global distribution, trends, and drivers of flash drought occurrence," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Auke M. Woude & Wouter Peters & Emilie Joetzjer & Sébastien Lafont & Gerbrand Koren & Philippe Ciais & Michel Ramonet & Yidi Xu & Ana Bastos & Santiago Botía & Stephen Sitch & Remco Kok & Tobias Kneue, 2023. "Temperature extremes of 2022 reduced carbon uptake by forests in Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    17. Yadu Pokhrel & Farshid Felfelani & Yusuke Satoh & Julien Boulange & Peter Burek & Anne Gädeke & Dieter Gerten & Simon N. Gosling & Manolis Grillakis & Lukas Gudmundsson & Naota Hanasaki & Hyungjun Kim, 2021. "Global terrestrial water storage and drought severity under climate change," Nature Climate Change, Nature, vol. 11(3), pages 226-233, March.
    18. Vincent Humphrey & Alexis Berg & Philippe Ciais & Pierre Gentine & Martin Jung & Markus Reichstein & Sonia I. Seneviratne & Christian Frankenberg, 2021. "Soil moisture–atmosphere feedback dominates land carbon uptake variability," Nature, Nature, vol. 592(7852), pages 65-69, April.
    19. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    20. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    21. Jiabo Yin & Pierre Gentine & Louise Slater & Lei Gu & Yadu Pokhrel & Naota Hanasaki & Shenglian Guo & Lihua Xiong & Wolfram Schlenker, 2023. "Future socio-ecosystem productivity threatened by compound drought–heatwave events," Nature Sustainability, Nature, vol. 6(3), pages 259-272, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Li & Yao Zhang & Emanuele Bevacqua & Jakob Zscheischler & Trevor F. Keenan & Xu Lian & Sha Zhou & Hongying Zhang & Mingzhu He & Shilong Piao, 2024. "Future increase in compound soil drought-heat extremes exacerbated by vegetation greening," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    7. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    8. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Hui Yue & Xiangyu Yu & Ying Liu & Xu Wang, 2023. "The Construction and Migration of a Multi-source Integrated Drought Index Based on Different Machine Learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 5989-6004, December.
    10. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    11. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
    12. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Haibo Lu & Zhangcai Qin & Shangrong Lin & Xiuzhi Chen & Baozhang Chen & Bin He & Jing Wei & Wenping Yuan, 2022. "Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    14. Alen Shrestha & Md Mafuzur Rahaman & Ajay Kalra & Rohit Jogineedi & Pankaj Maheshwari, 2020. "Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India," Forecasting, MDPI, vol. 2(2), pages 1-26, April.
    15. Panagiotis D. Oikonomou & Christos A. Karavitis & Demetrios E. Tsesmelis & Elpida Kolokytha & Rodrigo Maia, 2020. "Drought Characteristics Assessment in Europe over the Past 50 Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4757-4772, December.
    16. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    18. Margaret Sugg & Jennifer Runkle & Ronnie Leeper & Hannah Bagli & Andrew Golden & Leah Hart Handwerger & Tatiana Magee & Camila Moreno & Rhiannon Reed-Kelly & Michelle Taylor & Sarah Woolard, 2020. "A scoping review of drought impacts on health and society in North America," Climatic Change, Springer, vol. 162(3), pages 1177-1195, October.
    19. Huynh, Thanh D. & Nguyen, Thu Ha & Truong, Cameron, 2020. "Climate risk: The price of drought," Journal of Corporate Finance, Elsevier, vol. 65(C).
    20. Liping Jia & Yi He & Wanqing Liu & Yaru Zhang & Yanlin Li, 2023. "Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China," Sustainability, MDPI, vol. 15(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58253-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.