IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377419323406.html
   My bibliography  Save this article

Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit

Author

Listed:
  • Hong, Minki
  • Lee, Sang-Hyun
  • Lee, Seung-Jae
  • Choi, Jin-Yong

Abstract

We discussed the applicability of high-resolution meteorological data simulated by the NCAM-Weather Research and Forecasting (NCAM-WRF) model to investigate spatially distributed soil-moisture deficits in site-scale farmland areas. A gridded soil water budget model was developed to utilize the 90 m NCAM-WRF meteorological data to predict soil moisture content (SMC) at multiple depths. The applicability of the NCAM-WRF climatic variables to predict SMC was evaluated by comparing the SMC estimates with in-situ observations at the monitoring site. We used the Quantile Mapping (QM) method to correct the biases of NCAM-WRF precipitation outputs. The SMC estimates derived from the newly developed soil water budget model showed a good agreement with observations, and we proved that the bias-corrected NCAM-WRF precipitation data could improve the predictability of the temporal evolution of SMCs. For characterizing agricultural drought during the crop growing season, we presented a novel approach to estimate the magnitude, duration, and severity of agricultural drought events based on crop's critical pressure head. We mapped the distribution of SMC, soil matric potential (SMP), and drought severity at the 90-m resolution, and the results showed that applying the NCAM-WRF climatic variables to the modeling of SMC/SMP profiles can lead to drought characterization on site-scale while accounting for the spatial variability of rainfall and other climatic variables.

Suggested Citation

  • Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323406
    DOI: 10.1016/j.agwat.2020.106494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419323406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nishat, S. & Guo, Y. & Baetz, B.W., 2007. "Development of a simplified continuous simulation model for investigating long-term soil moisture fluctuations," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 53-63, August.
    2. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    3. Keshavarz, Mohammad Reza & Vazifedoust, Majid & Alizadeh, Amin, 2014. "Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data," Agricultural Water Management, Elsevier, vol. 132(C), pages 37-45.
    4. Yang, Huicai & Wang, Huixiao & Fu, Guobin & Yan, Haiming & Zhao, Panpan & Ma, Meihong, 2017. "A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain, China," Agricultural Water Management, Elsevier, vol. 194(C), pages 125-138.
    5. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    6. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, Open Access Journal, vol. 12(16), pages 1-22, August.
    2. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    3. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    4. Chen, Xinguo & Li, Yi & Yao, Ning & Liu, De Li & Javed, Tehseen & Liu, Chuncheng & Liu, Fenggui, 2020. "Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields," Agricultural Systems, Elsevier, vol. 185(C).
    5. Mohammed Sanusi Shiru & Shamsuddin Shahid & Noraliani Alias & Eun-Sung Chung, 2018. "Trend Analysis of Droughts during Crop Growing Seasons of Nigeria," Sustainability, MDPI, Open Access Journal, vol. 10(3), pages 1-13, March.
    6. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    7. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    8. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    9. Moonju Kim & Befekadu Chemere & Kyungil Sung, 2019. "Effect of Heavy Rainfall Events on the Dry Matter Yield Trend of Whole Crop Maize ( Zea mays L.)," Agriculture, MDPI, Open Access Journal, vol. 9(4), pages 1-11, April.
    10. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    11. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    12. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, Open Access Journal, vol. 9(12), pages 1-21, December.
    13. Mao, Wei & Yang, Jinzhong & Zhu, Yan & Ye, Ming & Wu, Jingwei, 2017. "Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas," Agricultural Water Management, Elsevier, vol. 192(C), pages 209-220.
    14. Migliaccio, Kati W. & Schaffer, Bruce & Crane, Jonathan H. & Davies, Frederick S., 2010. "Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida," Agricultural Water Management, Elsevier, vol. 97(10), pages 1452-1460, October.
    15. Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
    16. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    17. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    18. Huafeng Xu & Kexin Xu & Yingjie Yang, 2021. "Risk assessment model of agricultural drought disaster based on grey matter-element analysis theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2693-2707, July.
    19. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    20. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323406. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.