IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v264y2022ics0378377422000075.html
   My bibliography  Save this article

Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions

Author

Listed:
  • Trnka, Miroslav
  • Vizina, Adam
  • Hanel, Martin
  • Balek, Jan
  • Fischer, Milan
  • Hlavinka, Petr
  • Semerádová, Daniela
  • Štěpánek, Petr
  • Zahradníček, Pavel
  • Skalák, Petr
  • Eitzinger, Josef
  • Dubrovský, Martin
  • Máca, Petr
  • Bělínová, Monika
  • Zeman, Evžen
  • Brázdil, Rudolf

Abstract

The close relationship between the onset and severity of agricultural and hydrological drought is considered self-evident, yet relatively few studies have addressed the effects of applying agricultural drought adaptation to hydrological drought characteristics. The present study applies a model cascade capable of simultaneously considering the interactions between agricultural and hydrological droughts. The study area covers all river basins in the Czech Republic and includes the periods of 1956–2015 (baseline) and 2021–2080 (future). The model cascade was shown to explain 91% of the variability in the seasonal and annual accumulated runoff and allows for the analysis of increasing/maintaining/decreasing available water capacity (AWC) across the 133 defined basins with a total area of c. 78,000 km2. The study reports that the probability and extent of agricultural drought increased over the entire period with higher AWC scenario showing slower pace of such increase especially from April to June. The trends in the extent or severity of hydrological droughts were of low magnitude. The future climate has been projected through the use of ensembles of five global (CMIP5) and five regional (EURO-CORDEX) climate models. The results showed a significant increase in the duration of agricultural drought stress and in the area affected throughout the year, particularly in July–September. The hydrological drought response showed a marked difference between areas with a negative and positive climatic water balance, i.e., areas where long-term reference evapotranspiration exceeds long-term precipitation (negative climatic water balance) and where it does not (positive climatic water balance). The overall results indicate that increasing soil AWC would decrease the frequency and likely also impact of future agricultural droughts, especially during spring. This result would be especially true if the wetter winters predicted by some of the models materialized. Hydrological droughts at the country level are estimated to become more pronounced with increasing AWC, particularly in catchments with a negative climatic water balance.

Suggested Citation

  • Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000075
    DOI: 10.1016/j.agwat.2022.107460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vazifehkhah, Saeed & Kahya, Ercan, 2019. "Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale," Agricultural Water Management, Elsevier, vol. 217(C), pages 413-425.
    2. Kai Duan & Yadong Mei, 2014. "Comparison of Meteorological, Hydrological and Agricultural Drought Responses to Climate Change and Uncertainty Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5039-5054, November.
    3. Hlavinka, Petr & Trnka, Miroslav & Balek, Jan & Semerádová, Daniela & Hayes, Michael & Svoboda, Mark & Eitzinger, Josef & Mozný, Martin & Fischer, Milan & Hunt, Eric & Zalud, Zdenek, 2011. "Development and evaluation of the SoilClim model for water balance and soil climate estimates," Agricultural Water Management, Elsevier, vol. 98(8), pages 1249-1261, May.
    4. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    5. Miroslav Trnka & Kurt Kersebaum & Josef Eitzinger & Michael Hayes & Petr Hlavinka & Mark Svoboda & Martin Dubrovský & Daniela Semerádová & Brian Wardlow & Eduard Pokorný & Martin Možný & Don Wilhite &, 2013. "Consequences of climate change for the soil climate in Central Europe and the central plains of the United States," Climatic Change, Springer, vol. 120(1), pages 405-418, September.
    6. Simon N. Gosling & Jamal Zaherpour & Nick J. Mount & Fred F. Hattermann & Rutger Dankers & Berit Arheimer & Lutz Breuer & Jie Ding & Ingjerd Haddeland & Rohini Kumar & Dipangkar Kundu & Junguo Liu & A, 2017. "Erratum to: A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C," Climatic Change, Springer, vol. 141(3), pages 597-598, April.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    8. Sonia I. Seneviratne & Daniel Lüthi & Michael Litschi & Christoph Schär, 2006. "Land–atmosphere coupling and climate change in Europe," Nature, Nature, vol. 443(7108), pages 205-209, September.
    9. Martin Dubrovsky & Miroslav Trnka & Ian Holman & Eva Svobodova & Paula Harrison, 2015. "Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators," Climatic Change, Springer, vol. 128(3), pages 169-186, February.
    10. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    11. Martin Hanel & Magdalena Mrkvičková & Petr Máca & Adam Vizina & Pavel Pech, 2013. "Evaluation of Simple Statistical Downscaling Methods for Monthly Regional Climate Model Simulations with Respect to the Estimated Changes in Runoff in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5261-5279, December.
    12. L. Samaniego & S. Thober & R. Kumar & N. Wanders & O. Rakovec & M. Pan & M. Zink & J. Sheffield & E. F. Wood & A. Marx, 2018. "Anthropogenic warming exacerbates European soil moisture droughts," Nature Climate Change, Nature, vol. 8(5), pages 421-426, May.
    13. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    14. Simon N. Gosling & Jamal Zaherpour & Nick J. Mount & Fred F. Hattermann & Rutger Dankers & Berit Arheimer & Lutz Breuer & Jie Ding & Ingjerd Haddeland & Rohini Kumar & Dipangkar Kundu & Junguo Liu & A, 2017. "A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C," Climatic Change, Springer, vol. 141(3), pages 577-595, April.
    15. Olga Wilhelmi & Donald Wilhite, 2002. "Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 37-58, January.
    16. Jianjun Wu & Bin He & Aifeng Lü & Lei Zhou & Ming Liu & Lin Zhao, 2011. "Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 785-801, March.
    17. Devátý, Jan & Dostál, Tomáš & Hösl, Rosemarie & Krása, Josef & Strauss, Peter, 2019. "Effects of historical land use and land pattern changes on soil erosion – Case studies from Lower Austria and Central Bohemia," Land Use Policy, Elsevier, vol. 82(C), pages 674-685.
    18. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Thaler & Eva Pohankova & Josef Eitzinger & Petr Hlavinka & Matěj Orság & Vojtěch Lukas & Martin Brtnický & Pavel Růžek & Jana Šimečková & Tomáš Ghisi & Jakub Bohuslav & Karel Klem & Mirek Trnka, 2023. "Determining Factors Affecting the Soil Water Content and Yield of Selected Crops in a Field Experiment with a Rainout Shelter and a Control Plot in the Czech Republic," Agriculture, MDPI, vol. 13(7), pages 1-26, June.
    2. Potopová, V. & Trifan, T. & Trnka, M. & De Michele, C. & Semerádová, D. & Fischer, M. & Meitner, J. & Musiolková, M. & Muntean, N. & Clothier, B., 2023. "Copulas modelling of maize yield losses – drought compound events using the multiple remote sensing indices over the Danube River Basin," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Ihsan F. Hasan & Rozi Abdullah, 2022. "Agricultural Drought Characteristics Analysis Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5915-5930, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Zhang, Jien & Felzer, Benjamin S. & Troy, Tara J., 2020. "Projected changes of carbon balance in mesic grassland ecosystems in response to warming and elevated CO2 using CMIP5 GCM results in the Central Great Plains, USA," Ecological Modelling, Elsevier, vol. 434(C).
    3. Rishma Chengot & Jerry W. Knox & Ian P. Holman, 2021. "Evaluating the Feasibility of Water Sharing as a Drought Risk Management Tool for Irrigated Agriculture," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    4. Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Jamal Uddin Khan & A. K. M. Saiful Islam & Mohan K. Das & Khaled Mohammed & Sujit Kumar Bala & G. M. Tarekul Islam, 2020. "Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble," Climatic Change, Springer, vol. 162(2), pages 667-685, September.
    6. Olufemi Sunday Durowoju & Temi Emmanuel Ologunorisa & Ademola Akinbobola, 2022. "Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2431-2458, April.
    7. Kanwal, Vinita & Sirohi, Smita & Chand, Prem & Thakur, Arti, 2021. "Drought, Hunger and Malnutrition: Spatial and Socio-Economic Variations in the Desert State of India," 2021 Conference, August 17-31, 2021, Virtual 315248, International Association of Agricultural Economists.
    8. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    9. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    10. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    12. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    13. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    14. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    15. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    16. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    17. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    18. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    19. Hamid Nouri & Farnoush Ghasempour, 2019. "An Experimental Test for Application of Analytical Model of Surge Flow under Drought and Wet Conditions in a Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1969-1983, April.
    20. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.