IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63784-6.html
   My bibliography  Save this article

The first emergence of unprecedented global water scarcity in the Anthropocene

Author

Listed:
  • Vecchia P. Ravinandrasana

    (Institute for Basic Science
    Pusan National University)

  • Christian L. E. Franzke

    (Institute for Basic Science
    Pusan National University)

Abstract

Access to water is crucial for all aspects of life. Anthropogenic global warming is projected to disrupt the hydrological cycle, leading to water scarcity. However, the timing and hotspot regions of unprecedented water scarcity are unknown. Here, we estimate the Time of First Emergence (ToFE) of drought-driven water scarcity events, referred to as “Day Zero Drought” (DZD), which arises from hydrological compound extremes, including prolonged rainfall deficits, reduced river flow, and increasing water consumption. Using a probabilistic framework and a large ensemble of climate simulations, we attribute the timing and likelihood of DZD events to human influence. Many regions, including major reservoirs, may face high risk of DZD by the 2020s and 2030s. Despite model and scenario uncertainties, consistent DZD hotspots emerge across the Mediterranean, southern Africa, and parts of North America. Urban populations are particularly vulnerable at the 1.5 °C warming level. The length of time between successive DZD events is shorter than the duration of DZD, limiting recovery periods and exacerbating water scarcity risks. Therefore, more proactive water strategies are urgently needed to avoid severe societal impacts of DZD.

Suggested Citation

  • Vecchia P. Ravinandrasana & Christian L. E. Franzke, 2025. "The first emergence of unprecedented global water scarcity in the Anthropocene," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63784-6
    DOI: 10.1038/s41467-025-63784-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63784-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63784-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63784-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.