IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i9d10.1038_s41558-021-01112-8.html
   My bibliography  Save this article

Increasing impact of warm droughts on northern ecosystem productivity over recent decades

Author

Listed:
  • David Gampe

    (Augsburg University
    Ludwig Maximilian University of Munich)

  • Jakob Zscheischler

    (University of Bern
    University of Bern
    Helmholtz Centre for Environmental Research – UFZ)

  • Markus Reichstein

    (Max Planck Institute for Biogeochemistry)

  • Michael O’Sullivan

    (University of Exeter)

  • William K. Smith

    (University of Arizona)

  • Stephen Sitch

    (University of Exeter)

  • Wolfgang Buermann

    (Augsburg University
    University of California)

Abstract

Climate extremes such as droughts and heatwaves have a large impact on terrestrial carbon uptake by reducing gross primary production (GPP). While the evidence for increasing frequency and intensity of climate extremes over the last decades is growing, potential systematic adverse shifts in GPP have not been assessed. Using observationally-constrained and process-based model data, we estimate that particularly northern midlatitude ecosystems experienced a +10.6% increase in negative GPP extremes in the period 2000–2016 compared to 1982–1998. We attribute this increase predominantly to a greater impact of warm droughts, in particular over northern temperate grasslands (+95.0% corresponding mean increase) and croplands (+84.0%), in and after the peak growing season. These results highlight the growing vulnerability of ecosystem productivity to warm droughts, implying increased adverse impacts of these climate extremes on terrestrial carbon sinks as well as a rising pressure on global food security.

Suggested Citation

  • David Gampe & Jakob Zscheischler & Markus Reichstein & Michael O’Sullivan & William K. Smith & Stephen Sitch & Wolfgang Buermann, 2021. "Increasing impact of warm droughts on northern ecosystem productivity over recent decades," Nature Climate Change, Nature, vol. 11(9), pages 772-779, September.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:9:d:10.1038_s41558-021-01112-8
    DOI: 10.1038/s41558-021-01112-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01112-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01112-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    3. Daniel G. Gómez & Carlos G. Ochoa & Derek Godwin & Abigail A. Tomasek & María I. Zamora Re, 2022. "Soil Moisture and Water Transport through the Vadose Zone and into the Shallow Aquifer: Field Observations in Irrigated and Non-Irrigated Pasture Fields," Land, MDPI, vol. 11(11), pages 1-17, November.
    4. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    6. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    7. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Qian Cheng & Honggang Xu & Shuaipeng Fei & Zongpeng Li & Zhen Chen, 2022. "Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    9. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2022. "A New Weighting Scheme for Diminishing the Effect of Extreme Values in Regional Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4099-4114, September.
    10. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:9:d:10.1038_s41558-021-01112-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.