IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64565-x.html
   My bibliography  Save this article

Decadal trends in global grassland growth peaks and their drivers since the 1980s

Author

Listed:
  • Cuihai You

    (East China Normal University)

  • Shiping Chen

    (Chinese Academy of Sciences)

  • Zhiqin Tu

    (East China Normal University)

  • Chenyu Bian

    (East China Normal University)

  • Erqian Cui

    (East China Normal University)

  • Kun Huang

    (East China Normal University)

  • Fangxiu Wan

    (East China Normal University)

  • Jiaye Ping

    (East China Normal University)

  • Ning Wei

    (Cornell University)

  • Jianyang Xia

    (East China Normal University)

Abstract

Grasslands, Earth’s most widespread terrestrial ecosystems, are vital for global carbon sequestration and food security. A key indicator of these functions is vegetation growth peak, reflecting maximum seasonal productivity. However, whether this growth peak consistently increases across global grasslands remains unknown. Here, using satellite-derived vegetation data from 1982 to 2021, we reveal a widespread increase in grassland growth peaks, with 71% (20/28) IPCC climate regions exhibiting significant trends. However, this trend reverses between 1998 and 2009 in 64% of regions, notably across the Tibetan Plateau and East Asia. The reversal is supported by a global gross primary productivity dataset generated via machine learning, trained on eddy covariance flux data. The interruption is primarily associated with a global-scale decadal drought. These findings demonstrate that persistent drought can disrupt the upward trajectory of grassland growth peaks, posing a spatially uneven but widespread threat to ecological functions of grasslands under climate change.

Suggested Citation

  • Cuihai You & Shiping Chen & Zhiqin Tu & Chenyu Bian & Erqian Cui & Kun Huang & Fangxiu Wan & Jiaye Ping & Ning Wei & Jianyang Xia, 2025. "Decadal trends in global grassland growth peaks and their drivers since the 1980s," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64565-x
    DOI: 10.1038/s41467-025-64565-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64565-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64565-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao, Lijuan & Sun, Zhanli & Ren, Yanjun & Schierhorn, Florian & Müller, Daniel, 2021. "Grassland greening on the Mongolian Plateau despite higher grazing intensity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 32(2), pages 792-802.
    2. Qiang Yu & Chong Xu & Honghui Wu & Yuguang Ke & Xiaoan Zuo & Wentao Luo & Haiyan Ren & Qian Gu & Hongqiang Wang & Wang Ma & Alan K. Knapp & Scott L. Collins & Jennifer A. Rudgers & Yiqi Luo & Yann Hau, 2025. "Contrasting drought sensitivity of Eurasian and North American grasslands," Nature, Nature, vol. 639(8053), pages 114-118, March.
    3. Zaichun Zhu & Shilong Piao & Ranga B. Myneni & Mengtian Huang & Zhenzhong Zeng & Josep G. Canadell & Philippe Ciais & Stephen Sitch & Pierre Friedlingstein & Almut Arneth & Chunxiang Cao & Lei Cheng &, 2016. "Greening of the Earth and its drivers," Nature Climate Change, Nature, vol. 6(8), pages 791-795, August.
    4. Logan T. Berner & Richard Massey & Patrick Jantz & Bruce C. Forbes & Marc Macias-Fauria & Isla Myers-Smith & Timo Kumpula & Gilles Gauthier & Laia Andreu-Hayles & Benjamin V. Gaglioti & Patrick Burns , 2020. "Summer warming explains widespread but not uniform greening in the Arctic tundra biome," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    6. Benjamin Poulter & David Frank & Philippe Ciais & Ranga B. Myneni & Niels Andela & Jian Bi & Gregoire Broquet & Josep G. Canadell & Frederic Chevallier & Yi Y. Liu & Steven W. Running & Stephen Sitch , 2014. "Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle," Nature, Nature, vol. 509(7502), pages 600-603, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Andreas Koutsodendris & Vasilis Dakos & William J. Fletcher & Maria Knipping & Ulrich Kotthoff & Alice M. Milner & Ulrich C. Müller & Stefanie Kaboth-Bahr & Oliver A. Kern & Laurin Kolb & Polina Vakhr, 2023. "Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shaojian Huang & Tengfei Yuan & Zhengcheng Song & Ruirong Chang & Dong Peng & Peng Zhang & Ling Li & Peipei Wu & Guiyao Zhou & Fange Yue & Zhouqing Xie & Feiyue Wang & Yanxu Zhang, 2025. "Oceanic evasion fuels Arctic summertime rebound of atmospheric mercury and drives transport to Arctic terrestrial ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    6. Aishajiang Aili & Xu Hailiang & Abdul Waheed & Zhao Wanyu & Xu Qiao & Zhao Xinfeng & Zhang Peng, 2024. "The Dynamics of Vegetation Evapotranspiration and Its Response to Surface Meteorological Factors in the Altay Mountains, Northwest China," Sustainability, MDPI, vol. 16(19), pages 1-19, October.
    7. Jie Ding & Zhipeng Li & Heyu Zhang & Pu Zhang & Xiaoming Cao & Yiming Feng, 2022. "Quantifying the Aboveground Biomass (AGB) of Gobi Desert Shrub Communities in Northwestern China Based on Unmanned Aerial Vehicle (UAV) RGB Images," Land, MDPI, vol. 11(4), pages 1-17, April.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Wen Zhang & William K. Smith & Trevor F. Keenan & Matthew P. Dannenberg & Yang Li & Songhan Wang & John S. Kimball & David J. P. Moore, 2025. "Seasonal stabilization effects slowed the greening of the Northern Hemisphere over the last two decades," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    11. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Wendi Qu & Hao Hua & Ting Yang & Constantin M. Zohner & Josep Peñuelas & Jing Wei & Le Yu & Chaoyang Wu, 2025. "Delayed leaf green-up is associated with fine particulate air pollution in China," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Xunming Wang & Quansheng Ge & Xin Geng & Zhaosheng Wang & Lei Gao & Brett A. Bryan & Shengqian Chen & Yanan Su & Diwen Cai & Jiansheng Ye & Jimin Sun & Huayu Lu & Huizheng Che & Hong Cheng & Hongyan L, 2023. "Unintended consequences of combating desertification in China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Xiongyi Zhang & Jia Ning, 2023. "Patterns, Trends, and Causes of Vegetation Change in the Three Rivers Headwaters Region," Land, MDPI, vol. 12(6), pages 1-19, May.
    16. Wenqing Li & Rubén D. Manzanedo & Yuan Jiang & Wenqiu Ma & Enzai Du & Shoudong Zhao & Tim Rademacher & Manyu Dong & Hui Xu & Xinyu Kang & Jun Wang & Fang Wu & Xuefeng Cui & Neil Pederson, 2023. "Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    19. Jakob Runge, 2023. "Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    20. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64565-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.