IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p180-d1332492.html
   My bibliography  Save this article

Combined Effects of Meteorological Factors, Terrain, and Greenhouse Gases on Vegetation Phenology in Arid Areas of Central Asia from 1982 to 2021

Author

Listed:
  • Ruikang Tian

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China)

  • Liang Liu

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China)

  • Jianghua Zheng

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Jianhao Li

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China)

  • Wanqiang Han

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China)

  • Yujia Liu

    (College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China)

Abstract

Spatiotemporal variations in Central Asian vegetation phenology provide insights into arid ecosystem behavior and its response to environmental cues. Nevertheless, comprehensive research on the integrated impact of meteorological factors (temperature, precipitation, soil moisture, saturation vapor pressure deficit), topography (slope, aspect, elevation), and greenhouse gases (carbon dioxide, methane, nitrous oxide) on the phenology of Central Asian vegetation remains insufficient. Utilizing methods such as partial correlation and structural equation modeling, this study delves into the direct and indirect influences of climate, topography, and greenhouse gases on the phenology of vegetation. The results reveal that the start of the season decreased by 0.239 days annually, the length of the season increased by 0.044 days annually, and the end of the season decreased by 0.125 days annually from 1982 to 2021 in the arid regions of Central Asia. Compared with topography and greenhouse gases, meteorological factors are the dominant environmental factors affecting interannual phenological changes. Temperature and vapor pressure deficits (VPD) have become the principal meteorological elements influencing interannual dynamic changes in vegetation phenology. Elevation and slope primarily regulate phenological variation by influencing the VPD and soil moisture, whereas aspect mainly affects the spatiotemporal patterns of vegetation phenology by influencing precipitation and temperature. The findings of this study contribute to a deeper understanding of how various environmental factors collectively influence the phenology of vegetation, thereby fostering a more profound exploration of the intricate response relationships of terrestrial ecosystems to environmental changes.

Suggested Citation

  • Ruikang Tian & Liang Liu & Jianghua Zheng & Jianhao Li & Wanqiang Han & Yujia Liu, 2024. "Combined Effects of Meteorological Factors, Terrain, and Greenhouse Gases on Vegetation Phenology in Arid Areas of Central Asia from 1982 to 2021," Land, MDPI, vol. 13(2), pages 1-21, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:180-:d:1332492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xin Yang & Yuanyuan Hao & Wenxia Cao & Xiaojun Yu & Limin Hua & Xin Liu & Tao Yu & Caijin Chen, 2021. "How Does Spring Phenology Respond to Climate Change in Ecologically Fragile Grassland? A Case Study from the Northeast Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:180-:d:1332492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.