IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-022-04821-1.html
   My bibliography  Save this article

Carbon trading price prediction based on a two-stage heterogeneous ensemble method

Author

Listed:
  • Shaoze Cui

    (Dalian University of Technology)

  • Dujuan Wang

    (Sichuan University)

  • Yunqiang Yin

    (University of Electronic Science and Technology of China)

  • Xin Fan

    (Sichuan University)

  • Lalitha Dhamotharan

    (University of Exeter Business School)

  • Ajay Kumar

    (EMLYON Business School)

Abstract

Several countries have formulated carbon–neutral plans in dealing with global warming, which have also derived various carbon trading markets. All parties involved in carbon trading aim to obtain the maximum benefit from it, and this requires participants to accurately judge the carbon trading price. This study then proposes a two-stage heterogeneous ensemble method for predicting carbon trading prices. To accurately capture the characteristics of the time series data, we extracted four feature sets based on the lag length, moving average, variational mode decomposition, and empirical mode decomposition methods. Subsequently, four algorithms, linear regression, neural network, random forest, and XGBoost, constructed the first-layer model. We used a neural network algorithm to build the second-layer model to enhance the predictive model fit. Moreover, we used the particle swarm optimization algorithm to optimize the crucial parameters involved in the model. Extensive numerical experiments were conducted on carbon trading data from the Beijing carbon trading market in the past five years (2016–2021), and showed that our proposed method is superior to other popular methods such as LightGBM, support vector machine, and k-nearest neighbor.

Suggested Citation

  • Shaoze Cui & Dujuan Wang & Yunqiang Yin & Xin Fan & Lalitha Dhamotharan & Ajay Kumar, 2025. "Carbon trading price prediction based on a two-stage heterogeneous ensemble method," Annals of Operations Research, Springer, vol. 345(2), pages 953-977, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04821-1
    DOI: 10.1007/s10479-022-04821-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04821-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04821-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    2. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    3. Perdan, Slobodan & Azapagic, Adisa, 2011. "Carbon trading: Current schemes and future developments," Energy Policy, Elsevier, vol. 39(10), pages 6040-6054, October.
    4. Yilmazer, Seckin & Kocaman, Sultan, 2020. "A mass appraisal assessment study using machine learning based on multiple regression and random forest," Land Use Policy, Elsevier, vol. 99(C).
    5. Mohammad Zoynul Abedin & Chi Guotai & Fahmida–E– Moula & A.S.M. Sohel Azad & Mohammed Shamim Uddin Khan, 2019. "Topological applications of multilayer perceptrons and support vector machines in financial decision support systems," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 474-507, January.
    6. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    7. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    8. Rita Laura D’Ecclesia & Daniele Clementi, 2021. "Volatility in the stock market: ANN versus parametric models," Annals of Operations Research, Springer, vol. 299(1), pages 1101-1127, April.
    9. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    10. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
    11. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    12. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    13. Wen-An Yang & Qiang Zhou & Kwok-Leung Tsui, 2016. "Differential evolution-based feature selection and parameter optimisation for extreme learning machine in tool wear estimation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(15), pages 4703-4721, August.
    14. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    15. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
    2. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    3. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    4. Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
    5. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    6. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    7. Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
    8. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    10. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    11. Mselmi, Nada & Hamza, Taher & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Pricing corporate financial distress: Empirical evidence from the French stock market," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 13-27.
    12. Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    13. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    14. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    15. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    16. Alexandra Horobet & Stefania Cristina Curea & Alexandra Smedoiu Popoviciu & Cosmin-Alin Botoroga & Lucian Belascu & Dan Gabriel Dumitrescu, 2021. "Solvency Risk and Corporate Performance: A Case Study on European Retailers," JRFM, MDPI, vol. 14(11), pages 1-34, November.
    17. ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
    18. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    19. Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
    20. Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04821-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.