IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i2d10.1007_s11634-023-00543-9.html
   My bibliography  Save this article

Multivariate count time series segmentation with “sums and shares” and Poisson lognormal mixture models: a comparative study using pedestrian flows within a multimodal transport hub

Author

Listed:
  • Paul Nailly

    (Cosys-Grettia, Université Gustave Eiffel
    EDT, RATP)

  • Etienne Côme

    (Cosys-Grettia, Université Gustave Eiffel)

  • Latifa Oukhellou

    (Cosys-Grettia, Université Gustave Eiffel)

  • Allou Samé

    (Cosys-Grettia, Université Gustave Eiffel)

  • Jacques Ferriere

    (EDT, RATP)

  • Yasmine Merad-Boudia

    (EDT, RATP)

Abstract

This paper deals with a clustering approach based on mixture models to analyze multidimensional mobility count time-series data within a multimodal transport hub. These time series are very likely to evolve depending on various periods characterized by strikes, maintenance works, or health measures against the Covid19 pandemic. In addition, exogenous one-off factors, such as concerts and transport disruptions, can also impact mobility. Our approach flexibly detects time segments within which the very noisy count data is synthesized into regular spatio-temporal mobility profiles. At the upper level of the modeling, evolving mixing weights are designed to detect segments properly. At the lower level, segment-specific count regression models take into account correlations between series and overdispersion as well as the impact of exogenous factors. For this purpose, we set up and compare two promising strategies that can address this issue, namely the “sums and shares” and “Poisson log-normal” models. The proposed methodologies are applied to actual data collected within a multimodal transport hub in the Paris region. Ticketing logs and pedestrian counts provided by stereo cameras are considered here. Experiments are carried out to show the ability of the statistical models to highlight mobility patterns within the transport hub. One model is chosen based on its ability to detect the most continuous segments possible while fitting the count time series well. An in-depth analysis of the time segmentation, mobility patterns, and impact of exogenous factors obtained with the chosen model is finally performed.

Suggested Citation

  • Paul Nailly & Etienne Côme & Latifa Oukhellou & Allou Samé & Jacques Ferriere & Yasmine Merad-Boudia, 2024. "Multivariate count time series segmentation with “sums and shares” and Poisson lognormal mixture models: a comparative study using pedestrian flows within a multimodal transport hub," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 455-491, June.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-023-00543-9
    DOI: 10.1007/s11634-023-00543-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00543-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00543-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    2. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    3. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, December.
    4. Peyhardi, Jean & Fernique, Pierre & Durand, Jean-Baptiste, 2021. "Splitting models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    5. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    6. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    7. Jun Li & Peiqing Zheng & Wenna Zhang, 2020. "Identifying the spatial distribution of public transportation trips by node and community characteristics," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(3), pages 325-340, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian Aichholzer & Sylvia Kritzinger & Carolina Plescia, 2021. "National identity profiles and support for the European Union," European Union Politics, , vol. 22(2), pages 293-315, June.
    2. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    3. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    4. Kalle Hirvonen & John Hoddinott, 2017. "Agricultural production and children's diets: evidence from rural Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 469-480, July.
    5. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    6. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    7. Jacky C. K. Ng & Joanne Y. H. Chong & Hilary K. Y. Ng, 2023. "The way I see the world, the way I envy others: a person-centered investigation of worldviews and the malicious and benign forms of envy among adolescents and adults," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    8. Riccardo Crescenzi & Carlo Pietrobelli & Roberta Rabellotti, 2012. "Innovation Drivers, Value Chains and the Geography of Multinational Firms in European Regions," LEQS – LSE 'Europe in Question' Discussion Paper Series 53, European Institute, LSE.
    9. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    10. Gillian C. Williams & Karen A. Patte & Mark A. Ferro & Scott T. Leatherdale, 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    11. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    12. Gamba, Simona & Magazzini, Laura & Pertile, Paolo, 2021. "R&D and market size: Who benefits from orphan drug legislation?," Journal of Health Economics, Elsevier, vol. 80(C).
    13. Mélissa Lemoine & Gerhard Gmel & Simon Foster & Simon Marmet & Joseph Studer, 2020. "Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood?," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    14. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    15. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    16. Andrew Clark & Fabien Postel-Vinay, 2009. "Job security and job protection," Oxford Economic Papers, Oxford University Press, vol. 61(2), pages 207-239, April.
    17. Guido Bulligan & Francesco Corsello & Stefano Neri & Alex Tagliabracci, 2021. "De-anchored long-term inflation expectations in a low growth, low rate environment," Questioni di Economia e Finanza (Occasional Papers) 624, Bank of Italy, Economic Research and International Relations Area.
    18. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    19. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    20. Paul Kwame Nkegbe & Naasegnibe Kuunibe & Samuel Sekyi, 2017. "Poverty and malaria morbidity in the Jirapa District of Ghana: A count regression approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1293472-129, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-023-00543-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.