IDEAS home Printed from https://ideas.repec.org/a/sgh/gosnar/y2014i4p55-77.html
   My bibliography  Save this article

Makroekonomiczne czynniki ryzyka kredytowego w sektorze bankowym w Polsce

Author

Listed:
  • Piotr Wdowiński

Abstract

Celem artykułu jest przegląd głównych czynników mikro- i makroekonomicznych wpływających na ryzyko kredytowe oraz analiza modelu ryzyka kredytowego w sektorze bankowym w Polsce. Ryzyko kredytowe jest jednym z najważniejszych rodzajów ryzyka jakie podejmuje się w sektorze bankowym. Zarządzanie tym ryzykiem powinno podlegać ścisłej kontroli zarówno ze strony właścicieli, jak i poprzez działania o charakterze regulacyjno­‑nadzorczym. Na podstawie kwartalnych danych statystycznych w okresie od I kw. 1997 r. do II kw. 2013 r. oszacowano model korekty błędem dla zagregowanego ryzyka kredytowego w Polsce, mierzonego za pomocą odsetka kredytów z utratą wartości w kredytach ogółem. Za najważniejsze czynniki makroekonomiczne przyjęto PKB, stopę procentową, stopę bezrobocia oraz kurs walutowy. Przeprowadzono symulację ex post w latach 2008-2012 opierając się na scenariuszu makroekonomicznym obrazującym głęboką recesję gospodarczą w Polsce. Pokazano, że jego realizacja mogłaby spowodować wyraźny wzrost ryzyka kredytowego zarówno w odniesieniu do przedsiębiorstw niefinansowych, jak i gospodarstw domowych. W wyniku materializacji tego scenariusza sektor bankowy mógłby zostać dotknięty znacznym spadkiem aktywności i pogorszeniem się wyniku finansowego. Oznaczałoby to mniejsze możliwości inwestycyjne banków i pogorszenie się ich pozycji kapitałowej, co zmniejszyłoby ich zdolność do absorpcji strat. Sytuacja taka mogłaby doprowadzić do efektów „drugiej rundy” polegających na ograniczeniu finansowania sfery realnej gospodarki wskutek wzrostu ryzyka kredytowego i wzrostu marż kredytowych.

Suggested Citation

  • Piotr Wdowiński, 2014. "Makroekonomiczne czynniki ryzyka kredytowego w sektorze bankowym w Polsce," Gospodarka Narodowa, Warsaw School of Economics, issue 4, pages 55-77.
  • Handle: RePEc:sgh:gosnar:y:2014:i:4:p:55-77
    as

    Download full text from publisher

    File URL: http://gospodarkanarodowa.sgh.waw.pl/p/gospodarka_narodowa_2014_04_03.pdf
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Castro, Vítor, 2013. "Macroeconomic determinants of the credit risk in the banking system: The case of the GIPSI," Economic Modelling, Elsevier, vol. 31(C), pages 672-683.
    2. Antonella Foglia, 2009. "Stress Testing Credit Risk: A Survey of Authorities' Aproaches," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 9-45, September.
    3. Podpiera, Jiri & Weill, Laurent, 2008. "Bad luck or bad management? Emerging banking market experience," Journal of Financial Stability, Elsevier, vol. 4(2), pages 135-148, June.
    4. Thomas Breuer & Martin Jandacka & Klaus Rheinberger & Martin Summer, 2009. "How to Find Plausible, Severe and Useful Stress Scenarios," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 205-224, September.
    5. Nir Klein, 2013. "Non-Performing Loans in CESEE; Determinants and Impact on Macroeconomic Performance," IMF Working Papers 13/72, International Monetary Fund.
    6. Pesola, Jarmo, 2001. "The role of macroeconomic shocks in banking crises," Research Discussion Papers 6/2001, Bank of Finland.
    7. Berger, Allen N. & DeYoung, Robert, 1997. "Problem loans and cost efficiency in commercial banks," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 849-870, June.
    8. repec:onb:oenbwp:y:2002:i:3:b:3 is not listed on IDEAS
    9. Harvir Kalirai & Martin Scheicher, 2002. "Macroeconomic Stress Testing: Preliminary Evidence for Austria," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 3, pages 58-74.
    10. Beck, Roland & Jakubik, Petr & Piloiu, Anamaria, 2013. "Non-performing loans: what matters in addition to the economic cycle?," Working Paper Series 1515, European Central Bank.
    11. Mwanza Nkusu, 2011. "Nonperforming Loans and Macrofinancial Vulnerabilities in Advanced Economies," IMF Working Papers 11/161, International Monetary Fund.
    12. Ali, Asghar & Daly, Kevin, 2010. "Macroeconomic determinants of credit risk: Recent evidence from a cross country study," International Review of Financial Analysis, Elsevier, vol. 19(3), pages 165-171, June.
    13. Rinaldi, Laura & Sanchis-Arellano, Alicia, 2006. "Household debt sustainability: what explains household non-performing loans? An empirical analysis," Working Paper Series 570, European Central Bank.
    14. Raphael A Espinoza & Ananthakrishnan Prasad, 2010. "Nonperforming Loans in the GCC Banking System and their Macroeconomic Effects," IMF Working Papers 10/224, International Monetary Fund.
    15. Fofack, Hippolyte L., 2005. "Nonperforming loans in Sub-Saharan Africa : causal analysis and macroeconomic implications," Policy Research Working Paper Series 3769, The World Bank.
    16. Vicente Salas & Jesús Saurina, 2002. "Credit Risk in Two Institutional Regimes: Spanish Commercial and Savings Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 22(3), pages 203-224, December.
    17. Marcello Bofondi & Tiziano Ropele, 2011. "Macroeconomic determinants of bad loans: evidence from Italian banks," Questioni di Economia e Finanza (Occasional Papers) 89, Bank of Italy, Economic Research and International Relations Area.
    18. Juraj Zeman & Pavol Jurca, 2008. "Macro Stress Testing of the Slovak Banking Sector," Working and Discussion Papers WP 1/2008, Research Department, National Bank of Slovakia.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    sektor bankowy; ryzyko kredytowe; testy warunków skrajnych; model korekty błędem; analiza symulacyjna; scenariusz makroekonomiczny;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:gosnar:y:2014:i:4:p:55-77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dariusz Nojszewski). General contact details of provider: http://edirc.repec.org/data/sgwawpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.