IDEAS home Printed from https://ideas.repec.org/a/rom/mancon/v13y2019i1p514-520.html
   My bibliography  Save this article

The Impact Of The Knowledge Economy Indicators On Regional Economic Growth: Evidence From Kazakhstan

Author

Listed:
  • Aziza ZHUPAROVA
  • Rimma SAGIYEVA
  • Dinara ZHAISANOVA

Abstract

This paper presents an evaluation of the efficient role of knowledge based components, including effectiveness of government program, knowledge creation, information and communication technologies (ICT) and R&D and innovation factors in motivating economic growth of developing emerging economies, particularly in the Republic of Kazakhstan. For this purpose, a panel regression model is used to analyze the data collected from the Statistics Committee of the Ministry of National Economy during the years 2007–2017. The results extracted from an econometric model selected such factors as initial R&D expenses, number of organizations (enterprises) engaged in R&D and percentage of obtained patents and articles with impact factor per researcher get the impact to the economic growth of country. Furthermore, the study investigates efficiency of selected knowledge-intensive factors using Data Envelopment Analysis (DEA) based on CCR model, which showed that R&D expenses among of the regions of Kazakhstan is not equable and efficiency of other indicators like science and knowledge workers, knowledge creation and use of information and communication technologies (ICT) is low.

Suggested Citation

  • Aziza ZHUPAROVA & Rimma SAGIYEVA & Dinara ZHAISANOVA, 2019. "The Impact Of The Knowledge Economy Indicators On Regional Economic Growth: Evidence From Kazakhstan," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 514-520, November.
  • Handle: RePEc:rom:mancon:v:13:y:2019:i:1:p:514-520
    as

    Download full text from publisher

    File URL: https://conference.management.ase.ro/archives/2019/pdf/2_26.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Shiu, Alice & Heshmati, Almas, 2006. "Technical Change and Total Factor Productivity Growth for Chinese Provinces: A Panel Data Analysis," Ratio Working Papers 98, The Ratio Institute.
    3. Pii Elina Berghäll, 2012. "R&D vs. Other Factor Inputs in a High-Tech Industry," Industry and Innovation, Taylor & Francis Journals, vol. 19(2), pages 127-153, February.
    4. Rimma Sagiyeva & Aziza Zhuparova & Rashid Ruzanov & Raigul Doszhan & Askar Askerov, 2018. "Intellectual input of development by knowledge-based economy: problems of measuring in countries with developing markets," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(2), pages 711-728, December.
    5. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galymkair Mutanov & Aziza Zhuparova & Dinara Zhaisanova, 2020. "Measuring the Knowledge-Based Performance Efficiency in the Oil-Exported Countries," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 16(3), pages 109-122.
    2. Wang, Lan-Hsun & Liao, Shu-Yi & Huang, Mao-Lung, 2022. "The growth effects of knowledge-based technological change on Taiwan’s industry: A comparison of R&D and education level," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 525-545.
    3. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    4. Ioannis E. Tsolas, 2021. "Firm Credit Scoring: A Series Two-Stage DEA Bootstrapped Approach," JRFM, MDPI, vol. 14(5), pages 1-12, May.
    5. P. Beraldi & M. E. Bruni, 2020. "Efficiency evaluation under uncertainty: a stochastic DEA approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 519-538, December.
    6. Elina Berghäll, 2017. "Knowledge Spillovers, the Technology Frontier and High-Tech FDI - Evidence from Finland," Finnish Economic Papers, Finnish Economic Association, vol. 28(1), pages 34-49, Autumn.
    7. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    8. repec:lan:wpaper:1115 is not listed on IDEAS
    9. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    10. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    11. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    12. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    13. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    14. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    15. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    16. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    17. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    18. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    19. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    20. Bogetoft, Peter & Nielsen, Kurt, 2003. "Yardstick Based Procurement Design In Natural Resource Management," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25910, International Association of Agricultural Economists.
    21. Singer, Marcos & Donoso, Patricio & Poblete, Francisco, 2002. "Semi-autonomous planning using linear programming in the Chilean General Treasury," European Journal of Operational Research, Elsevier, vol. 140(2), pages 517-529, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rom:mancon:v:13:y:2019:i:1:p:514-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ciocoiu Nadia Carmen (email available below). General contact details of provider: https://edirc.repec.org/data/mnasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.