IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v347y2025i1d10.1007_s10479-023-05764-x.html
   My bibliography  Save this article

Inverted VEA for worst-practice benchmarking: with an application to distress prediction of European banks

Author

Listed:
  • Panagiotis Ravanos

    (University of Macedonia)

  • Stavros Kourtzidis

    (University of Dundee)

  • Giannis Karagiannis

    (University of Macedonia)

Abstract

In this paper we introduce managerial preferences in the assessment of worst-practices by means of Value Efficiency Analysis (VEA). Our model involves the choice of a Decision Making Unit (DMU) being on the worst-practice frontier, that has the least desirable input/output structure by view of a Decision Maker (DM). The method then assesses all DMUs based on the worst favorable sets of input/output weights for the chosen DMU. The scores of the associated linear program, referred to as Inverted VEA, are larger than or equal to the respective Inverted DEA scores. Higher (lower) differences between Inverted DEA and Inverted VEA scores highlight DMUs with an input–output bundle that is farther (closer) to the least desirable ones. This aids central management to identify DMUs which should be marked for closer monitoring and inspection or put through a restructuring process. We illustrate the usefulness of the method by applying it to assess the relative financial distress of 33 major European banks that were evaluated by the European Banking Authority in the 2018 stress test.

Suggested Citation

  • Panagiotis Ravanos & Stavros Kourtzidis & Giannis Karagiannis, 2025. "Inverted VEA for worst-practice benchmarking: with an application to distress prediction of European banks," Annals of Operations Research, Springer, vol. 347(1), pages 471-499, April.
  • Handle: RePEc:spr:annopr:v:347:y:2025:i:1:d:10.1007_s10479-023-05764-x
    DOI: 10.1007/s10479-023-05764-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05764-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05764-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael E. Bradbury & Paul Rouse, 2002. "An Application of Data Envelopment Analysis to the Evaluation of Audit Risk," Abacus, Accounting Foundation, University of Sydney, vol. 38(2), pages 263-279, June.
    2. Sueyoshi, Toshiyuki, 1999. "DEA-discriminant analysis in the view of goal programming," European Journal of Operational Research, Elsevier, vol. 115(3), pages 564-582, June.
    3. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    4. Jianyi Huang & Yi Liu & Li Ma & Fei Su, 2013. "Methodology for the assessment and classification of regional vulnerability to natural hazards in China: the application of a DEA model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 115-134, January.
    5. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    6. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    7. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    8. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    9. Jan Willem Van den End, 2016. "A macroprudential approach to address liquidity risk with the loan-to-deposit ratio," The European Journal of Finance, Taylor & Francis Journals, vol. 22(3), pages 237-253, February.
    10. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    11. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    12. Pekka Korhonen & Margareta Soismaa & Aapo Siljamäki, 2002. "On the Use of Value Efficiency Analysis and Some Further Developments," Journal of Productivity Analysis, Springer, vol. 17(1), pages 49-64, January.
    13. Sherman, H. David & Gold, Franklin, 1985. "Bank branch operating efficiency : Evaluation with Data Envelopment Analysis," Journal of Banking & Finance, Elsevier, vol. 9(2), pages 297-315, June.
    14. Wheelock, David C & Wilson, Paul W, 1995. "Explaining Bank Failures: Deposit Insurance, Regulation, and Efficiency," The Review of Economics and Statistics, MIT Press, vol. 77(4), pages 689-700, November.
    15. Dan Tong & Qiang Zhang & Steven J. Davis & Fei Liu & Bo Zheng & Guannan Geng & Tao Xue & Meng Li & Chaopeng Hong & Zifeng Lu & David G. Streets & Dabo Guan & Kebin He, 2018. "Targeted emission reductions from global super-polluting power plant units," Nature Sustainability, Nature, vol. 1(1), pages 59-68, January.
    16. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    17. Rogge, Nicky, 2012. "Undesirable specialization in the construction of composite policy indicators: The Environmental Performance Index," Working Papers 2012/08, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    18. Merja Halme & Tarja Joro & Pekka Korhonen & Seppo Salo & Jyrki Wallenius, 1999. "A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis," Management Science, INFORMS, vol. 45(1), pages 103-115, January.
    19. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multi-group discrimination using multi-criteria analysis: Illustrations from the field of finance," European Journal of Operational Research, Elsevier, vol. 139(2), pages 371-389, June.
    20. Berger, Allen N. & DeYoung, Robert, 1997. "Problem loans and cost efficiency in commercial banks," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 849-870, June.
    21. Panagiotis Ravanos & Giannis Karagiannis, 2022. "In search for the most preferred solution in value efficiency analysis," Journal of Productivity Analysis, Springer, vol. 58(2), pages 203-220, December.
    22. Haufler, Andreas, 2021. "Regulatory and bailout decisions in a banking union," Journal of Banking & Finance, Elsevier, vol. 133(C).
    23. Jamal Ouenniche & Kaoru Tone, 2017. "An out-of-sample evaluation framework for DEA with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 254(1), pages 235-250, July.
    24. Zhiyong Li & Jonathan Crook & Galina Andreeva, 2014. "Chinese companies distress prediction: an application of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 466-479, March.
    25. Merja Halme & Pekka J Korhonen, 2015. "Using Value Efficiency Analysis to Benchmark Nonhomogeneous Units," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 727-745.
    26. M. Saisana & A. Saltelli & S. Tarantola, 2005. "Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 307-323, March.
    27. Gobbo, Simone Cristina de Oliveira & Mariano, Enzo Barberio & Gobbo Jr., José Alcides, 2021. "Combining social network and data envelopment analysis: A proposal for a Selection Employment Contracts Effectiveness index in healthcare network applications," Omega, Elsevier, vol. 103(C).
    28. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    29. Bowlin, William F., 2004. "Financial analysis of civil reserve air fleet participants using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(3), pages 691-709, May.
    30. João Granja & Gregor Matvos & Amit Seru, 2017. "Selling Failed Banks," Journal of Finance, American Finance Association, vol. 72(4), pages 1723-1784, August.
    31. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    32. Zhou, P. & Ang, B.W. & Poh, K.L., 2007. "A mathematical programming approach to constructing composite indicators," Ecological Economics, Elsevier, vol. 62(2), pages 291-297, April.
    33. Richard S. BARR & Lawrence M. SEIFORD & Thomas F. SIEMS, 1994. "Forecasting Bank Failure : A Non-Parametric Frontier Estimation Approach," Discussion Papers (REL - Recherches Economiques de Louvain) 1994041, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    34. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    35. Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
    36. Pille, Peter & Paradi, Joseph C., 2002. "Financial performance analysis of Ontario (Canada) Credit Unions: An application of DEA in the regulatory environment," European Journal of Operational Research, Elsevier, vol. 139(2), pages 339-350, June.
    37. Kao, Chiang & Liu, Shiang-Tai, 2004. "Predicting bank performance with financial forecasts: A case of Taiwan commercial banks," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2353-2368, October.
    38. Kadoya, Susumu & Kuroko, Takashi & Namatame, Takashi, 2008. "Contrarian investment strategy with data envelopment analysis concept," European Journal of Operational Research, Elsevier, vol. 189(1), pages 120-131, August.
    39. Necmi Avkiran & Lin Cai, 2014. "Identifying distress among banks prior to a major crisis using non-oriented super-SBM," Annals of Operations Research, Springer, vol. 217(1), pages 31-53, June.
    40. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    41. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    42. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
    43. Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
    44. repec:eme:mfppss:03074350210767988 is not listed on IDEAS
    45. Entani, Tomoe & Maeda, Yutaka & Tanaka, Hideo, 2002. "Dual models of interval DEA and its extension to interval data," European Journal of Operational Research, Elsevier, vol. 136(1), pages 32-45, January.
    46. Takamura, Yoshiharu & Tone, Kaoru, 2003. "A comparative site evaluation study for relocating Japanese government agencies out of Tokyo," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 85-102, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    2. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    3. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    4. Ioannis E. Tsolas, 2021. "Firm Credit Scoring: A Series Two-Stage DEA Bootstrapped Approach," JRFM, MDPI, vol. 14(5), pages 1-12, May.
    5. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    6. Isik, Ihsan & Uygur, Ozge, 2021. "Financial crises, bank efficiency and survival: Theory, literature and emerging market evidence," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 952-987.
    7. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    8. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    9. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    10. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    11. Panagiotis Ravanos & Giannis Karagiannis, 2025. "On value efficiency analysis and cone-ratio data envelopment analysis models," Journal of Productivity Analysis, Springer, vol. 63(1), pages 49-68, February.
    12. Panagiotis Ravanos & Giannis Karagiannis, 2021. "A VEA Benefit-of-the-Doubt Model for the HDI," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 27-46, May.
    13. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    14. Martin Eling, 2006. "Performance measurement of hedge funds using data envelopment analysis," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 442-471, December.
    15. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    16. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    17. Chiang Kao & Shiang-Tai Liu, 2022. "Stochastic efficiencies of network production systems with correlated stochastic data: the case of Taiwanese commercial banks," Annals of Operations Research, Springer, vol. 315(2), pages 1151-1174, August.
    18. Sufian, Fadzlan & Abdul Majid, Muhamed Zulkhibri, 2007. "Bank Ownership, Characteristics and Performance: A Comparative Analysis of Domestic and Foreign Islamic Banks in Malaysia," MPRA Paper 12131, University Library of Munich, Germany, revised 01 Jun 2007.
    19. Xiaohong Liu & Jiasen Sun & Feng Yang & Jie Wu, 2020. "How ownership structure affects bank deposits and loan efficiencies: an empirical analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 290(1), pages 983-1008, July.
    20. Sabri Boubaker & Riadh Manita & Salma Mefteh-Wali, 2022. "Foreign currency hedging and firm productive efficiency," Annals of Operations Research, Springer, vol. 313(2), pages 833-854, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:347:y:2025:i:1:d:10.1007_s10479-023-05764-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.