IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i1d10.1038_s41893-017-0003-y.html
   My bibliography  Save this article

Targeted emission reductions from global super-polluting power plant units

Author

Listed:
  • Dan Tong

    (Tsinghua University
    Tsinghua University)

  • Qiang Zhang

    (Tsinghua University)

  • Steven J. Davis

    (Tsinghua University
    University of California)

  • Fei Liu

    (Tsinghua University)

  • Bo Zheng

    (Tsinghua University)

  • Guannan Geng

    (Tsinghua University)

  • Tao Xue

    (Tsinghua University)

  • Meng Li

    (Tsinghua University)

  • Chaopeng Hong

    (Tsinghua University)

  • Zifeng Lu

    (Argonne National Laboratory)

  • David G. Streets

    (Argonne National Laboratory)

  • Dabo Guan

    (Tsinghua University
    University of East Anglia)

  • Kebin He

    (Tsinghua University)

Abstract

There are more than 30,000 biomass- and fossil-fuel-burning power plants now operating worldwide, reflecting a tremendously diverse infrastructure, which ranges in capacity from less than a megawatt to more than a gigawatt. In 2010, 68.7% of electricity generated globally came from these power plants, compared with 64.2% in 1990. Although the electricity generated by this infrastructure is vital to economic activity worldwide, it also produces more CO2 and air pollutant emissions than infrastructure from any other industrial sector. Here, we assess fuel- and region-specific opportunities for reducing undesirable air pollutant emissions using a newly developed emission dataset at the level of individual generating units. For example, we find that retiring or installing emission control technologies on units representing 0.8% of the global coal-fired power plant capacity could reduce levels of PM2.5 emissions by 7.7–14.2%. In India and China, retiring coal-fired plants representing 1.8% and 0.8% of total capacity can reduce total PM2.5 emissions from coal-fired plants by 13.2% and 16.0%, respectively. Our results therefore suggest that policies targeting a relatively small number of ‘super-polluting’ units could substantially reduce pollutant emissions and thus the related impacts on both human health and global climate.

Suggested Citation

  • Dan Tong & Qiang Zhang & Steven J. Davis & Fei Liu & Bo Zheng & Guannan Geng & Tao Xue & Meng Li & Chaopeng Hong & Zifeng Lu & David G. Streets & Dabo Guan & Kebin He, 2018. "Targeted emission reductions from global super-polluting power plant units," Nature Sustainability, Nature, vol. 1(1), pages 59-68, January.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:1:d:10.1038_s41893-017-0003-y
    DOI: 10.1038/s41893-017-0003-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-017-0003-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-017-0003-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Rui & Lv, Guonian, 2021. "The climate economic effect of technology spillover," Energy Policy, Elsevier, vol. 159(C).
    2. Yali Zheng & Xiaoyi He & Hewu Wang & Michael Wang & Shaojun Zhang & Dong Ma & Binggang Wang & Ye Wu, 2020. "Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 355-370, March.
    3. Tao, Yiheng & Liang, Haiming & Celia, Michael A., 2020. "Electric power development associated with the Belt and Road Initiative and its carbon emissions implications," Applied Energy, Elsevier, vol. 267(C).
    4. Janicke, Lauren & Nock, Destenie & Surana, Kavita & Jordaan, Sarah M., 2023. "Air pollution co-benefits from strengthening electric transmission and distribution systems," Energy, Elsevier, vol. 269(C).
    5. Tyler Andrew Scott & Nicola Ulibarri & Omar Perez Figueroa, 2020. "NEPA and National Trends in Federal Infrastructure Siting in the United States," Review of Policy Research, Policy Studies Organization, vol. 37(5), pages 605-633, September.
    6. Xinyu Dou & Yilong Wang & Philippe Ciais & Fr'ed'eric Chevallier & Steven J. Davis & Monica Crippa & Greet Janssens-Maenhout & Diego Guizzardi & Efisio Solazzo & Feifan Yan & Da Huo & Zheng Bo & Zhu D, 2021. "Global Gridded Daily CO$_2$ Emissions," Papers 2107.08586, arXiv.org.
    7. Vieira, Leticia Canal & Longo, Mariolina & Mura, Matteo, 2021. "Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis," Energy Policy, Elsevier, vol. 156(C).
    8. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Nakaishi, Tomoaki & Nagashima, Fumiya & Kagawa, Shigemi & Nansai, Keisuke & Chatani, Satoru, 2023. "Quantifying the health benefits of improving environmental efficiency: A case study from coal power plants in China," Energy Economics, Elsevier, vol. 121(C).
    10. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    11. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    12. Maamoun, Nada & Chitkara, Puneet & Yang, Joonseok & Shrimali, Gireesh & Busby, Joshua & Shidore, Sarang & Jin, Yana & Urpelainen, Johannes, 2022. "Identifying coal plants for early retirement in India: A multidimensional analysis of technical, economic, and environmental factors," Applied Energy, Elsevier, vol. 312(C).
    13. Zhang, Xiaodong & Patino-Echeverri, Dalia & Li, Mingquan & Wu, Libo, 2022. "A review of publicly available data sources for models to study renewables integration in China's power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Pu Wang & Cheng-Kuan Lin & Yi Wang & Dachuan Liu & Dunjiang Song & Tong Wu, 2021. "Location-specific co-benefits of carbon emissions reduction from coal-fired power plants in China," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    16. Xiahou, Qinrui & Springer, Cecilia Han & Mendelsohn, Robert, 2022. "The effect of foreign investment on Asian coal power plants," Energy Economics, Elsevier, vol. 105(C).
    17. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Haozhi Pan & Jessica Page & Rui Shi & Cong Cong & Zipan Cai & Stephan Barthel & Patrik Thollander & Johan Colding & Zahra Kalantari, 2023. "Contribution of prioritized urban nature-based solutions allocation to carbon neutrality," Nature Climate Change, Nature, vol. 13(8), pages 862-870, August.
    19. Tao Xue & Mingkun Tong & Jiajianghui Li & Ruohan Wang & Tianjia Guan & Jiwei Li & Pengfei Li & Hengyi Liu & Hong Lu & Yanshun Li & Tong Zhu, 2022. "Estimation of stillbirths attributable to ambient fine particles in 137 countries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    21. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).
    22. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
    23. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    24. Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:1:d:10.1038_s41893-017-0003-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.