Investigation of the impact of uncertainty indices on Bitcoin volatility using the ARDL model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Polterovich, Victor, 2017.
"Positive collaboration: Factors and mechanisms of evolution,"
Russian Journal of Economics, Elsevier, vol. 3(1), pages 24-41.
- V. Polterovich, 2016. "Positive collaboration: Factors and mechanisms of evolution," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 11.
- Artem Aganin & Vyacheslav Manevich & Anatoly Peresetsky & Polina Pogorelova, 2023. "Comparison of Cryptocurrency and Stock Market Volatility Forecast Models," HSE Economic Journal, National Research University Higher School of Economics, vol. 27(1), pages 49-77.
- Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
- M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
- Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
- Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Manevich, Vyacheslav & Peresetsky, Anatoly & Pogorelova, Polina, 2022. "Stock market and cryptocurrency market volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 65-76.
- Imlak Shaikh, 2019. "On the Relationship between Economic Policy Uncertainty and the Implied Volatility Index," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
- White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015.
"VAR for VaR: Measuring tail dependence using multivariate regression quantiles,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
- Habert white & Tae-Hwan Kim & Simone Manganelli, 2012. "VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles," Working papers 2012rwp-45, Yonsei University, Yonsei Economics Research Institute.
- Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2015. "VAR for VaR: measuring tail dependence using multivariate regression quantiles," Working Paper Series 1814, European Central Bank.
- Jozef BarunÃk & Tobias Kley, 2019.
"Quantile coherency: A general measure for dependence between cyclical economic variables,"
The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
- Jozef Barun'ik & Tobias Kley, 2015. "Quantile Coherency: A General Measure for Dependence between Cyclical Economic Variables," Papers 1510.06946, arXiv.org, revised Dec 2018.
- Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
- Yu, Jian & Shi, Xunpeng & Guo, Dongmei & Yang, Longjian, 2021. "Economic policy uncertainty (EPU) and firm carbon emissions: Evidence using a China provincial EPU index," Energy Economics, Elsevier, vol. 94(C).
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Simran, & Sharma, Anil Kumar, 2023. "Asymmetric impact of economic policy uncertainty on cryptocurrency market: Evidence from NARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
- Wang, Gang-Jin & Xie, Chi & Wen, Danyan & Zhao, Longfeng, 2019. "When Bitcoin meets economic policy uncertainty (EPU): Measuring risk spillover effect from EPU to Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nikolaos A. Kyriazis, 2021. "The Nexus of Sophisticated Digital Assets with Economic Policy Uncertainty: A Survey of Empirical Findings and an Empirical Investigation," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
- Simran, & Sharma, Anil Kumar, 2023. "Asymmetric impact of economic policy uncertainty on cryptocurrency market: Evidence from NARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
- Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
- Elsayed, Ahmed H. & Gozgor, Giray & Yarovaya, Larisa, 2022. "Volatility and return connectedness of cryptocurrency, gold, and uncertainty: Evidence from the cryptocurrency uncertainty indices," Finance Research Letters, Elsevier, vol. 47(PB).
- Khalfaoui, Rabeh & Tiwari, Aviral Kumar & Kablan, Sandrine & Hammoudeh, Shawkat, 2021.
"Interdependence and lead-lag relationships between the oil price and metal markets: Fresh insights from the wavelet and quantile coherency approaches,"
Energy Economics, Elsevier, vol. 101(C).
- Rabeh Khalfaoui & Aviral Kumar Tiwari & Sandrine Kablan & Shawkat Hammoudeh, 2021. "Interdependence and lead-lag relationships between the oil price and metal markets: Fresh insights from the wavelet and quantile coherency approaches," Post-Print hal-03797581, HAL.
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Jian, Peng & Zhengjie, Sun, 2024. "Navigating the green future: Unraveling the role of fintech, decentralization, natural resources, and monetary policy uncertainty in China," Resources Policy, Elsevier, vol. 89(C).
- Ma, Lujia & Zhu, Jiaji & Han, Wei, 2024. "Short-term and long-term effects of Chinese and global economic policy uncertainty and geopolitical risks on Chinese tourism," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1351-1360.
- Samet Gürsoy & Bartosz Jóźwik & Mesut Dogan & Feyyaz Zeren & Nazligul Gulcan, 2024. "Impact of Climate Policy Uncertainty, Clean Energy Index, and Carbon Emission Allowance Prices on Bitcoin Returns," Sustainability, MDPI, vol. 16(9), pages 1-14, May.
- Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
- Zhu, Xuehong & Niu, Zibo & Zhang, Hongwei & Huang, Jiaxin & Zuo, Xuguang, 2022. "Can gold and bitcoin hedge against the COVID-19 related news sentiment risk? New evidence from a NARDL approach," Resources Policy, Elsevier, vol. 79(C).
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Li, Zijian & Meng, Qiaoyu, 2022. "Time and frequency connectedness and portfolio diversification between cryptocurrencies and renewable energy stock markets during COVID-19," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
- Wang, Jiqian & Ma, Feng & Wang, Tianyang & Wu, Lan, 2023. "International stock volatility predictability: New evidence from uncertainties," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
- Aamir Javed & José Alberto Fuinhas & Agnese Rapposelli, 2023. "Asymmetric Nexus between Green Technology Innovations, Economic Policy Uncertainty, and Environmental Sustainability: Evidence from Italy," Energies, MDPI, vol. 16(8), pages 1-20, April.
- Adil, Masudul Hasan & Roy, Amrita, 2024. "Asymmetric effects of uncertainty on investment: Empirical evidence from India," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
- Simran, & Sharma, Anil Kumar, 2024. "Asymmetric nexus between economic policy uncertainty and the Indian stock market: Evidence using NARDL approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 91-101.
- Chengying He & Yong Li & Tianqi Wang & Salman Ali Shah, 2024. "Is cryptocurrency a hedging tool during economic policy uncertainty? An empirical investigation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
- Makushkin, Mikhail & Lapshin, Victor, 2020. "Modelling tail dependencies between Russian and foreign stock markets: Application for market risk valuation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 30-52.
- Francisco Jareño & Ana Escribano & Monika W. Koczar, 2020. "Non-Linear Interdependencies between International Stock Markets: The Polish and Spanish Case," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
More about this item
Keywords
Bitcoin; cryptocurrency; realized volatility; ARDL model; uncertainty indices; COVID-19.;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0496. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.