IDEAS home Printed from
   My bibliography  Save this article

Revealing the mood of economic agents based on search queries


  • Petrova, Diana

    (Russian Presidential Academy of National Economy and Public Administration. Moscow, Russian Federation)

  • Trunin, Pavel

    (Russian Presidential Academy of National Economy and Public Administration, Gaidar Institute for Economic Policy. Moscow, Russian Federation)


Currently, user behavior on the Internet is becoming a key source of information about the market sentiments and the public mood. In this regard, it becomes relevant to study the usefulness of such indicators in modeling macroeconomic indicators. This article proposes an approach to assessment the mood of economic agents using Google Trends search queries. A key particularity of the article is the selection of keywords based on the analysis of RBC news from January 2010 to March 2020. The results showed that sentiments in financial and money markets based on a principal component analysis strongly correlated with the financial stress index of ACRA and Rosstat consumer confidence index, which confirms the possibility of use search queries in the development and analysis of economic policy. We use search query indices for the consumer confidence index forecasting with mixed data sampling (MIDAS). In out-of-sample forecasting, our results show that MIDAS which includes the indicator of sentiment in the money market gives the best forecast performance for the next quarter, and MIDAS with the sentiment in the financial markets has a high accuracy of forecasting the consumer confidence index for 3 quarters.

Suggested Citation

  • Petrova, Diana & Trunin, Pavel, 2020. "Revealing the mood of economic agents based on search queries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 71-87.
  • Handle: RePEc:ris:apltrx:0400

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    1. Fantazzini, Dean & Shakleina, Marina & Yuras, Natalia, 2018. "Big Data for computing social well-being indices of the Russian population," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 43-66.
    2. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    3. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    4. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    5. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    6. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    7. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    8. Michał Chojnowski & Piotr Dybka, 2017. "Is Exchange Rate Moody? Forecasting Exchange Rate with Google Trends Data," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 1-21, June.
    9. Nimark, Kristoffer P. & Pitschner, Stefan, 2019. "News media and delegated information choice," Journal of Economic Theory, Elsevier, vol. 181(C), pages 160-196.
    10. Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
    11. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    12. Seabold,Skipper & Coppola,Andrea, 2015. "Nowcasting prices using Google trends : an application to Central America," Policy Research Working Paper Series 7398, The World Bank.
    13. Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
    14. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
    15. I. Goloshchapova & M. Andreev., 2017. "Measuring inflation expectations of the Russian population with the help of machine learning," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    16. Minchae Song & Kyung‐shik Shin, 2019. "Forecasting economic indicators using a consumer sentiment index: Survey‐based versus text‐based data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 504-518, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svatopluk Kapounek & Zuzana Kučerová & Evžen Kočenda, 2022. "Selective Attention in Exchange Rate Forecasting," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 210-229, May.
    2. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    3. Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    4. Vegard H�ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    5. Szymon Sacher & Laura Battaglia & Stephen Hansen, 2021. "Hamiltonian Monte Carlo for Regression with High-Dimensional Categorical Data," Papers 2107.08112,
    6. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    7. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    8. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    9. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    10. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    11. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    12. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    13. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    14. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    15. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    16. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    17. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201316, University of Hawaii at Manoa, Department of Economics.
    18. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    19. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    20. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.

    More about this item


    search queries; Google Trend; topic modeling; text analysis; sentiment; forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0400. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.