IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279933.html
   My bibliography  Save this article

Planning and performance in teams: A Bayesian meta-analytic structural equation modeling approach

Author

Listed:
  • Udo Konradt
  • Alexander Nath
  • Martina Oldeweme

Abstract

We meta-analyzed the relationship between team planning and performance moderated by task, team, context, and methodological factors. For testing our hypothesized model, we used a meta-analytic structural equation modeling approach. Based on K = 33 independent samples (N = 1,885 teams), a mixed-effects model indicated a non‐zero moderate positive effect size (ρ = .31, 95% CI [.20, .42]). Methodological quality, generally rated as adequate, was unrelated to effect size. Sensitivity analyses suggest that effect sizes were robust to exclusion of any individual study and publication bias. The statistical power of the studies was generally low and significantly moderated the relationship, with a large positive relationship for studies with high-powered (k = 42, ρ = .40, 95% CI [.27, .54]) and a smaller, significant relationship for low-powered studies (k = 54, ρ = .16, 95% CI [.01, .30]). The effect size was robust and generally not qualified by a large number of moderators, but was more pronounced for less interdependent tasks, less specialized team members, and assessment of quality rather than quantity of planning. Latent class analysis revealed no qualitatively different subgroups within populations. We recommend large‐scale collaboration to overcome several methodological weaknesses of the current literature, which is severely underpowered, potentially biased by self-reporting data, and lacks long-term follow-ups.

Suggested Citation

  • Udo Konradt & Alexander Nath & Martina Oldeweme, 2023. "Planning and performance in teams: A Bayesian meta-analytic structural equation modeling approach," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0279933
    DOI: 10.1371/journal.pone.0279933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rapp, Adam & Ahearne, Michael & Mathieu, John & Rapp, Tammy, 2010. "Managing sales teams in a virtual environment," International Journal of Research in Marketing, Elsevier, vol. 27(3), pages 213-224.
    2. Geoffrey Kingston, 2001. "Cost Benefit Analysis in Theory and Practice," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 34(4), pages 478-487, December.
    3. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    4. Anita Williams Woolley, 2009. "Means vs. Ends: Implications of Process and Outcome Focus for Team Adaptation and Performance," Organization Science, INFORMS, vol. 20(3), pages 500-515, June.
    5. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    6. Brinckmann, Jan & Grichnik, Dietmar & Kapsa, Diana, 2010. "Should entrepreneurs plan or just storm the castle? A meta-analysis on contextual factors impacting the business planning-performance relationship in small firms," Journal of Business Venturing, Elsevier, vol. 25(1), pages 24-40, January.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Mark W. Lipsey, 2003. "Those Confounded Moderators in Meta-Analysis: Good, Bad, and Ugly," The ANNALS of the American Academy of Political and Social Science, , vol. 587(1), pages 69-81, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    6. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    7. Otrachshenko, Vladimir & Tyurina, Elena & Nagapetyan, Artur, 2022. "The economic value of the Glass Beach: Contingent valuation and life satisfaction approaches," Ecological Economics, Elsevier, vol. 198(C).
    8. Antje Schmitt & Kathrin Rosing & Stephen X. Zhang & Michael Leatherbee, 2018. "A Dynamic Model of Entrepreneurial Uncertainty and Business Opportunity Identification: Exploration as a Mediator and Entrepreneurial Self-Efficacy as a Moderator," Entrepreneurship Theory and Practice, , vol. 42(6), pages 835-859, November.
    9. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    10. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    11. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    12. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    13. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    14. repec:jss:jstsof:21:i08 is not listed on IDEAS
    15. Deng, Yaguo & Lopes Moreira da Veiga, María Helena & Wiper, Michael Peter, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    17. K. Poehlmann & R. Helm & O. Mauroner & J. Auburger, 2021. "Corporate spin-offs’ success factors: management lessons from a comparative empirical analysis with research-based spin-offs," Review of Managerial Science, Springer, vol. 15(6), pages 1767-1796, August.
    18. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    19. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    20. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    21. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.