IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279933.html
   My bibliography  Save this article

Planning and performance in teams: A Bayesian meta-analytic structural equation modeling approach

Author

Listed:
  • Udo Konradt
  • Alexander Nath
  • Martina Oldeweme

Abstract

We meta-analyzed the relationship between team planning and performance moderated by task, team, context, and methodological factors. For testing our hypothesized model, we used a meta-analytic structural equation modeling approach. Based on K = 33 independent samples (N = 1,885 teams), a mixed-effects model indicated a non‐zero moderate positive effect size (ρ = .31, 95% CI [.20, .42]). Methodological quality, generally rated as adequate, was unrelated to effect size. Sensitivity analyses suggest that effect sizes were robust to exclusion of any individual study and publication bias. The statistical power of the studies was generally low and significantly moderated the relationship, with a large positive relationship for studies with high-powered (k = 42, ρ = .40, 95% CI [.27, .54]) and a smaller, significant relationship for low-powered studies (k = 54, ρ = .16, 95% CI [.01, .30]). The effect size was robust and generally not qualified by a large number of moderators, but was more pronounced for less interdependent tasks, less specialized team members, and assessment of quality rather than quantity of planning. Latent class analysis revealed no qualitatively different subgroups within populations. We recommend large‐scale collaboration to overcome several methodological weaknesses of the current literature, which is severely underpowered, potentially biased by self-reporting data, and lacks long-term follow-ups.

Suggested Citation

  • Udo Konradt & Alexander Nath & Martina Oldeweme, 2023. "Planning and performance in teams: A Bayesian meta-analytic structural equation modeling approach," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0279933
    DOI: 10.1371/journal.pone.0279933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brinckmann, Jan & Grichnik, Dietmar & Kapsa, Diana, 2010. "Should entrepreneurs plan or just storm the castle? A meta-analysis on contextual factors impacting the business planning-performance relationship in small firms," Journal of Business Venturing, Elsevier, vol. 25(1), pages 24-40, January.
    2. Geoffrey Kingston, 2001. "Cost Benefit Analysis in Theory and Practice," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 34(4), pages 478-487, December.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    5. Rapp, Adam & Ahearne, Michael & Mathieu, John & Rapp, Tammy, 2010. "Managing sales teams in a virtual environment," International Journal of Research in Marketing, Elsevier, vol. 27(3), pages 213-224.
    6. Mark W. Lipsey, 2003. "Those Confounded Moderators in Meta-Analysis: Good, Bad, and Ugly," The ANNALS of the American Academy of Political and Social Science, , vol. 587(1), pages 69-81, May.
    7. Anita Williams Woolley, 2009. "Means vs. Ends: Implications of Process and Outcome Focus for Team Adaptation and Performance," Organization Science, INFORMS, vol. 20(3), pages 500-515, June.
    8. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    4. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    5. Nowak, Piotr Bolesław, 2016. "The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 49-54.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    9. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Otrachshenko, Vladimir & Tyurina, Elena & Nagapetyan, Artur, 2022. "The economic value of the Glass Beach: Contingent valuation and life satisfaction approaches," Ecological Economics, Elsevier, vol. 198(C).
    15. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    16. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    17. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    18. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    19. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    20. Antje Schmitt & Kathrin Rosing & Stephen X. Zhang & Michael Leatherbee, 2018. "A Dynamic Model of Entrepreneurial Uncertainty and Business Opportunity Identification: Exploration as a Mediator and Entrepreneurial Self-Efficacy as a Moderator," Entrepreneurship Theory and Practice, , vol. 42(6), pages 835-859, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.