Reconstructing systematic persistent impacts of promotional marketing with empirical nonlinear dynamics
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0221167
Download full text from publisher
References listed on IDEAS
- Golyandina, Nina & Korobeynikov, Anton, 2014. "Basic Singular Spectrum Analysis and forecasting with R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 934-954.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cole, Matthew T. & McCullough, Michael, 2023.
"California beer price posting: An exploratory analysis of pricing along the supply chain,"
Journal of Wine Economics, Cambridge University Press, vol. 18(3), pages 205-225, August.
- Matthew T. Cole & Michael McCullough, 2023. "California Beer Price Posting: An exploratory analysis of pricing along the supply chain," Working Papers 2301, California Polytechnic State University, Department of Economics.
- Ray Huffaker & Garry Griffith & Charles Dambui & Maurizio Canavari, 2021. "Empirical Detection and Quantification of Price Transmission in Endogenously Unstable Markets: The Case of the Global–Domestic Coffee Supply Chain in Papua New Guinea," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
- Haydar Demirhan, 2020. "dLagM: An R package for distributed lag models and ARDL bounds testing," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-23, February.
- Andrés Martínez & Alfonso Salafranca & Ana E. Sipols & Clara Simon Blas & Daniel Hengel, 2024. "Distributed lags using elastic-net regularization for market response models: focus on predictive and explanatory capacity," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 417-435, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
- Aman Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
- Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
- Aman Mohammad Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
- Borke, Lukas & Härdle, Wolfgang Karl, 2016. "Q3-D3-Lsa," SFB 649 Discussion Papers 2016-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Golyandina, Nina & Korobeynikov, Anton & Shlemov, Alex & Usevich, Konstantin, 2015. "Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i02).
- Hossein Hassani & Mahdi Kalantari & Zara Ghodsi, 2019. "Evaluating the Performance of Multiple Imputation Methods for Handling Missing Values in Time Series Data: A Study Focused on East Africa, Soil-Carbonate-Stable Isotope Data," Stats, MDPI, vol. 2(4), pages 1-11, December.
- Qing Pei & David D Zhang & Guodong Li & Harry F Lee, 2015. "Climate Change and the Macroeconomic Structure in Pre-Industrial Europe: New Evidence from Wavelet Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
- Xingmin Zhang & Zhiyong Li & Yiming Zhao & Lan Wang, 2025. "Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting," Annals of Operations Research, Springer, vol. 345(2), pages 1267-1295, February.
- Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
- Pohl Philipp, 2017. "Valuation of a Company using Time Series Analysis," Journal of Business Valuation and Economic Loss Analysis, De Gruyter, vol. 12(1), pages 1-39, February.
- de Carvalho, Miguel & Martos, Gabriel, 2020. "Brexit: Tracking and disentangling the sentiment towards leaving the EU," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1128-1137.
- Telesca, Luciano & Laib, Mohamed & Guignard, Fabian & Mauree, Dasaraden & Kanevski, Mikhail, 2019. "Linearity versus non-linearity in high frequency multilevel wind time series measured in urban areas," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 234-244.
- Huffaker, R. & Canavari, M. & Muñoz-Carpena, R., 2018. "Distinguishing between endogenous and exogenous price volatility in food security assessment: An empirical nonlinear dynamics approach," Agricultural Systems, Elsevier, vol. 160(C), pages 98-109.
- Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- repec:hum:wpaper:sfb649dp2016-049 is not listed on IDEAS
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/plo/pone00/0221167.html