IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0023777.html
   My bibliography  Save this article

A Meta-Analysis of Global Urban Land Expansion

Author

Listed:
  • Karen C Seto
  • Michail Fragkias
  • Burak Güneralp
  • Michael K Reilly

Abstract

The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely.

Suggested Citation

  • Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0023777
    DOI: 10.1371/journal.pone.0023777
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023777
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023777&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0023777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    2. Antonio M. Bento & Maureen L. Cropper & Ahmed Mushfiq Mobarak & Katja Vinha, 2005. "The Effects of Urban Spatial Structure on Travel Demand in the United States," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 466-478, August.
    3. Colin Vance & Ralf Hedel, 2007. "The impact of urban form on automobile travel: disentangling causation from correlation," Transportation, Springer, vol. 34(5), pages 575-588, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heres-Del-Valle, David & Niemeier, Deb, 2011. "CO2 emissions: Are land-use changes enough for California to reduce VMT? Specification of a two-part model with instrumental variables," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 150-161, January.
    2. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    3. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Morikawa, Masayuki, 2012. "Population density and efficiency in energy consumption: An empirical analysis of service establishments," Energy Economics, Elsevier, vol. 34(5), pages 1617-1622.
    5. Steven Spears & Marlon G Boarnet & Douglas Houston, 2017. "Driving reduction after the introduction of light rail transit: Evidence from an experimental-control group evaluation of the Los Angeles Expo Line," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2780-2799, September.
    6. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    7. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    8. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    9. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    10. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    11. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    12. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    13. Akihiro Otsuka, 2018. "Regional Determinants of Energy Efficiency: Residential Energy Demand in Japan," Energies, MDPI, vol. 11(6), pages 1-14, June.
    14. Brownstone, David & Fang, Hao (Audrey), 2014. "A vehicle ownership and utilization choice model with endogenous residential density," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 135-151.
    15. Li, Phillip, 2011. "Estimation of sample selection models with two selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1099-1108, February.
    16. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    17. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    18. Kay, Andrew I. & Noland, Robert B. & Rodier, Caroline J., 2014. "Achieving reductions in greenhouse gases in the US road transportation sector," Energy Policy, Elsevier, vol. 69(C), pages 536-545.
    19. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    20. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0023777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.