IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i1d10.1038_s41893-019-0441-9.html
   My bibliography  Save this article

Heat exposure and global air conditioning

Author

Listed:
  • Léopold T. Biardeau

    (University of California, Berkeley)

  • Lucas W. Davis

    (University of California, Berkeley
    National Bureau of Economic Research)

  • Paul Gertler

    (University of California, Berkeley
    National Bureau of Economic Research)

  • Catherine Wolfram

    (University of California, Berkeley
    National Bureau of Economic Research)

Abstract

Air conditioning adoption is increasing dramatically worldwide as incomes rise and average temperatures go up. Using daily temperature data from 14,500 weather stations, we rank 219 countries and 1,692 cities based on a widely used measure of cooling demand called total cooling degree day exposure. India, China, Indonesia, Nigeria, Pakistan, Brazil, Bangladesh and the Philippines all have more total cooling degree day exposure than the United States—a country that uses 400 terawatt-hours of electricity annually for air conditioning.

Suggested Citation

  • Léopold T. Biardeau & Lucas W. Davis & Paul Gertler & Catherine Wolfram, 2020. "Heat exposure and global air conditioning," Nature Sustainability, Nature, vol. 3(1), pages 25-28, January.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:1:d:10.1038_s41893-019-0441-9
    DOI: 10.1038/s41893-019-0441-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0441-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0441-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole D. Miranda & Jesus Lizana & Sarah N. Sparrow & Miriam Zachau-Walker & Peter A. G. Watson & David C. H. Wallom & Radhika Khosla & Malcolm McCulloch, 2023. "Change in cooling degree days with global mean temperature rise increasing from 1.5 °C to 2.0 °C," Nature Sustainability, Nature, vol. 6(11), pages 1326-1330, November.
    2. Olivier Deschenes, 2022. "The impact of climate change on mortality in the United States: Benefits and costs of adaptation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1227-1249, August.
    3. Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
    4. Zhe Li & Feng Wu & Huiqiang Ma & Zhanjun Xu & Shaohua Wang, 2022. "Spatiotemporal Evolution and Relationship between Night Time Light and Land Surface Temperature: A Case Study of Beijing, China," Land, MDPI, vol. 11(4), pages 1-24, April.
    5. Garg, Teevrat & Gibson, Matthew & Sun, Fanglin, 2020. "Extreme temperatures and time use in China," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 309-324.
    6. Pan He & Pengfei Liu & Yueming (Lucy) Qiu & Lufan Liu, 2022. "The weather affects air conditioner purchases to fill the energy efficiency gap," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Meeks, Robyn C. & Omuraliev, Arstan & Isaev, Ruslan & Wang, Zhenxuan, 2023. "Impacts of electricity quality improvements: Experimental evidence on infrastructure investments," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    8. Shaun McRae, 2023. "Residential Electricity Consumption and Adaptation to Climate Change by Colombian Households," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 253-279, July.
    9. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    10. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Osunmuyiwa, Olufolahan O. & Peacock, Andrew D. & Payne, Sarah R. & Vigneswara Ilavarasan, P. & Jenkins, David P., 2021. "Divergent imaginaries? Co-producing practitioner and householder perspective to cooling demand response in India," Energy Policy, Elsevier, vol. 152(C).
    12. Xingchi Shen & Yueming Lucy Qiu & Pengfei Liu & Anand Patwardhan, 2022. "The Effect of Rebate and Loan Incentives on Residential Heat Pump Adoption: Evidence from North Carolina," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 741-789, July.
    13. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    14. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    15. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).
    16. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    17. Matthew E. Kahn & Somik Lall, 2022. "Will the Developing World’s Growing Middle Class Support Low Carbon Policies?," NBER Working Papers 30238, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:1:d:10.1038_s41893-019-0441-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.