IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i8d10.1007_s11027-022-10032-7.html
   My bibliography  Save this article

Cooling access and energy requirements for adaptation to heat stress in megacities

Author

Listed:
  • Alessio Mastrucci

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Edward Byers

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Shonali Pachauri

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Narasimha Rao

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program
    Yale School of the Environment, Yale University)

  • Bas Ruijven

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

Abstract

As urban areas are increasingly exposed to high temperatures, lack of access to residential thermal comfort is a challenge with dramatic consequences for human health and well-being. Air-conditioning (AC) can provide relief against heat stress, but a massive AC uptake could entail stark energy demand growth and mitigation challenges. Slums pose additional risks due to poor building quality, failing to provide adequate shelter from severe climatic conditions. Thus, it is unclear how many people in the Global South will still lack access to basic cooling under different future climate and socioeconomic developments. We assess the impact of different shared socioeconomic pathways (SSPs) and climate futures on the extent of population lacking access to cooling where needed—the cooling gap—and energy requirements for basic comfort for a set of 22 megacities in the Global South. We find that different SSPs greatly influence the extent of future cooling gaps, generally larger in SSP3 due low income levels, and consequent limited access to AC and durable housing. Megacities in Sub-Saharan Africa and South Asia have the largest share of population affected, ranging from 33% (SSP1) to 86% (SSP3) by mid-century. Energy requirements to provide basic cooling for all are higher in SSP1 for most megacities, driven by urbanization, and can increase by 7 to 23% moving from 2.0 to 3.0 °C temperature rise levels. Strategies combining improved building design and efficient cooling systems can improve adaptation to heat stress in cities while reducing energy and emission requirements to reach climate and sustainability goals.

Suggested Citation

  • Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10032-7
    DOI: 10.1007/s11027-022-10032-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10032-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10032-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    5. A. Lemonsu & Vincent Viguie & M. Daniel & V. Masson, 2015. "Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France)," Post-Print hal-01695088, HAL.
    6. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    7. Narasimha D. Rao & Jihoon Min & Alessio Mastrucci, 2019. "Energy requirements for decent living in India, Brazil and South Africa," Nature Energy, Nature, vol. 4(12), pages 1025-1032, December.
    8. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    9. Léopold T. Biardeau & Lucas W. Davis & Paul Gertler & Catherine Wolfram, 2020. "Heat exposure and global air conditioning," Nature Sustainability, Nature, vol. 3(1), pages 25-28, January.
    10. Daisuke Murakami & Yoshiki Yamagata, 2019. "Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    2. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    4. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    5. Bjoern Soergel & Elmar Kriegler & Isabelle Weindl & Sebastian Rauner & Alois Dirnaichner & Constantin Ruhe & Matthias Hofmann & Nico Bauer & Christoph Bertram & Benjamin Leon Bodirsky & Marian Leimbac, 2021. "A sustainable development pathway for climate action within the UN 2030 Agenda," Nature Climate Change, Nature, vol. 11(8), pages 656-664, August.
    6. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    7. Jingwen Huo & Jing Meng & Heran Zheng & Priti Parikh & Dabo Guan, 2023. "Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    9. Ben Parkes & Jennifer Cronin & Olivier Dessens & Benjamin Sultan, 2019. "Climate change in Africa: costs of mitigating heat stress," Climatic Change, Springer, vol. 154(3), pages 461-476, June.
    10. Imre Csáky & Tünde Kalmár & Ferend Kalmár, 2019. "Operation Testing of an Advanced Personalized Ventilation System," Energies, MDPI, vol. 12(9), pages 1-13, April.
    11. Edelenbosch, OY & Rovelli, D & Levesque, A & Marangoni, G & Tavoni, M, 2021. "Long term, cross-country effects of buildings insulation policies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    12. Keii Gi & Fuminori Sano & Ayami Hayashi & Toshimasa Tomoda & Keigo Akimoto, 2018. "A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 51-79, January.
    13. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    14. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    15. Alessio Mastrucci & Bas Ruijven & Edward Byers & Miguel Poblete-Cazenave & Shonali Pachauri, 2021. "Global scenarios of residential heating and cooling energy demand and CO2 emissions," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
    16. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    17. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, vol. 13(9), pages 1-19, May.
    18. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    19. József Menyhárt & Ferenc Kalmár, 2019. "Investigation of Thermal Comfort Responses with Fuzzy Logic," Energies, MDPI, vol. 12(9), pages 1-13, May.
    20. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10032-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.