IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i5d10.1007_s11116-019-10006-w.html
   My bibliography  Save this article

Factors underlying the connections between active transportation and public transit at commuter rail in the Greater Toronto and Hamilton Area

Author

Listed:
  • Kevin Chan

    () (University of Toronto)

  • Steven Farber

    () (University of Toronto Scarborough)

Abstract

Encouraging the integration of active transportation with transit is increasingly being pursued as a strategy by transit agencies to boost alternative means to access transit services. Using the Greater Toronto and Hamilton Areas’ GO Transit as a case study, we conduct an investigation into the land-use and socioeconomic variables influencing the use of active transportation to access commuter rail stations. The percentage of transit users that arrive by active modes is explored using a binomial logit model. Population density, proportion of residential land, population age, low automobile ownership and median income are found to be positively associated with the integration of active transportation and transit. The proportion of commercial/institutional land, street density, and the amount of car parking at stations are negatively associated with access by active transport. The research helps to identify several policies that may increase the level of integration between active transport and public transit in the Greater Toronto and Hamilton Area.

Suggested Citation

  • Kevin Chan & Steven Farber, 2020. "Factors underlying the connections between active transportation and public transit at commuter rail in the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 47(5), pages 2157-2178, October.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10006-w
    DOI: 10.1007/s11116-019-10006-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10006-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Givoni, Moshe & Rietveld, Piet, 2007. "The access journey to the railway station and its role in passengers' satisfaction with rail travel," Transport Policy, Elsevier, vol. 14(5), pages 357-365, September.
    2. Morency, Catherine & Trépanier, Martin & Demers, Marie, 2011. "Walking to transit: An unexpected source of physical activity," Transport Policy, Elsevier, vol. 18(6), pages 800-806, November.
    3. Sallis, James F. & Frank, Lawrence D. & Saelens, Brian E. & Kraft, M. Katherine, 2004. "Active transportation and physical activity: opportunities for collaboration on transportation and public health research," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 249-268, May.
    4. Kager, R. & Bertolini, L. & Te Brömmelstroet, M., 2016. "Characterisation of and reflections on the synergy of bicycles and public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 208-219.
    5. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    6. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    7. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    8. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venter, Christoffel J., 2020. "Measuring the quality of the first/last mile connection to public transport," Research in Transportation Economics, Elsevier, vol. 83(C).
    2. Olaf Jonkeren & Roland Kager & Lucas Harms & Marco Brömmelstroet, 2021. "The bicycle-train travellers in the Netherlands: personal profiles and travel choices," Transportation, Springer, vol. 48(1), pages 455-476, February.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    6. Roberto Sañudo & Eneko Echaniz & Borja Alonso & Rubén Cordera, 2019. "Addressing the Importance of Service Attributes in Railways," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-20, June.
    7. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    8. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    9. Abenoza, Roberto F. & Liu, Chengxi & Cats, Oded & Susilo, Yusak O., 2019. "What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 34-50.
    10. Cheng, Yung-Hsiang & Chen, Ssu-Yun, 2015. "Perceived accessibility, mobility, and connectivity of public transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 386-403.
    11. Cheng, Yung-Hsiang & Liu, Kuo-Chu, 2012. "Evaluating bicycle-transit users’ perceptions of intermodal inconvenience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1690-1706.
    12. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    13. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    14. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    15. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    16. Lachapelle, Ugo & Noland, Robert B., 2012. "Does the commute mode affect the frequency of walking behavior? The public transit link," Transport Policy, Elsevier, vol. 21(C), pages 26-36.
    17. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    18. Moyano, Amparo & Moya-Gómez, Borja & Gutiérrez, Javier, 2018. "Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 84-93.
    19. Feng Zhen & Xinyu Cao & Jia Tang, 2019. "The role of access and egress in passenger overall satisfaction with high speed rail," Transportation, Springer, vol. 46(6), pages 2137-2150, December.
    20. Roman Sidorchuk & Anastasia Lukina & Ilya Markin & Stanislav Korobkov & Natalia Ivashkova & Sergey Mkhitaryan & Irina Skorobogatykh, 2020. "Influence of Passenger Flow at the Station Entrances on Passenger Satisfaction Amid COVID-19," Journal of Open Innovation: Technology, Market, and Complexity, MDPI, Open Access Journal, vol. 6(4), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10006-w. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.