IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v121y2024ics0966692324002163.html
   My bibliography  Save this article

Equity of access to rail services by complementary motorized and active modes

Author

Listed:
  • Shafiq, Mudassar
  • Lobo, António
  • Couto, António

Abstract

The public transport system only serves its true purpose when people living in the region have adequate and direct access to its services. Rail systems, including light rail, metro, urban, suburban, and long-distance trains, are the key fixed structural elements of any transport system that provide faster access for both shorter and longer trips and are regarded as a more efficient and environmentally friendly option to move a larger number of passengers than road transport. However, it is not feasible in terms of investment and financial sustainability to provide rail services everywhere, especially in rural zones. Thus, connectivity with all the other available (active and motorized) modes is crucial to improve accessibility and reduce inequities. In this paper, we developed a methodology to quantify and contrast the access to the existing rail services between zones of a metropolitan area and corresponding inequities. We considered not only the usually analyzed active modes, pertaining to a certain level of proximity to the rail stations, but also motorized modes (e.g., car and bus) that can enable the connection to rail services where these are not easily accessible by walking or cycling. First, the accessibility to the existing rail stations is quantified using place-based gravity measures, considering the travel times for the complementary modes with and without incorporating the stations' attractiveness, measured by service frequency. Second, the global inequity levels of the spatial distribution of the rail network in the metropolitan area are evaluated using the Gini index. Third, local inequities, at a scale of small census blocks, are measured considering the access (supply) and the population (potential demand). While the local-scale analysis allows to identify the most unfavored zones, the global inequities by complementary modes aim to inform targeted strategies to improve the integration of those modes with rail services. The methodology was applied to the Metropolitan Area of Porto, Portugal, where we observed a non-uniform distribution of rail services and a decrease in access towards the periphery. However, considering the population living in each zone, both underserved and well-served zones are mostly present in the most populated/central areas.

Suggested Citation

  • Shafiq, Mudassar & Lobo, António & Couto, António, 2024. "Equity of access to rail services by complementary motorized and active modes," Journal of Transport Geography, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002163
    DOI: 10.1016/j.jtrangeo.2024.104007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324002163
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hensher, David A., 2007. "Sustainable public transport systems: Moving towards a value for money and network-based approach and away from blind commitment," Transport Policy, Elsevier, vol. 14(1), pages 98-102, January.
    2. Levinson, David M., 2012. "Accessibility impacts of high-speed rail," Journal of Transport Geography, Elsevier, vol. 22(C), pages 288-291.
    3. Hao Pang & Alireza Khani, 2018. "Modeling park-and-ride location choice of heterogeneous commuters," Transportation, Springer, vol. 45(1), pages 71-87, January.
    4. El-Geneidy, Ahmed & Levinson, David & Diab, Ehab & Boisjoly, Genevieve & Verbich, David & Loong, Charis, 2016. "The cost of equity: Assessing transit accessibility and social disparity using total travel cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 302-316.
    5. Lopes, Miguel & Mélice Dias, Ana & Silva, Cecília, 2021. "The impact of urban features in cycling potential – A tale of Portuguese cities," Journal of Transport Geography, Elsevier, vol. 95(C).
    6. Fan, Yingling & Guthrie, Andrew E & Levinson, David M, 2012. "Impact of light rail implementation on labor market accessibility: A transportation equity perspective," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 28-39.
    7. Graham, Daniel J. & Couto, Antonio & Adeney, William E. & Glaister, Stephen, 2003. "Economies of scale and density in urban rail transport: effects on productivity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(6), pages 443-458, November.
    8. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    9. Jaramillo, Ciro & Lizárraga, Carmen & Grindlay, Alejandro Luis, 2012. "Spatial disparity in transport social needs and public transport provision in Santiago de Cali (Colombia)," Journal of Transport Geography, Elsevier, vol. 24(C), pages 340-357.
    10. Currie, Graham, 2010. "Quantifying spatial gaps in public transport supply based on social needs," Journal of Transport Geography, Elsevier, vol. 18(1), pages 31-41.
    11. Jun Yang & Andong Guo & Xueming Li & Tai Huang, 2018. "Study of the Impact of a High-Speed Railway Opening on China’s Accessibility Pattern and Spatial Equality," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    12. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    13. Scheiner, Joachim, 2010. "Interrelations between travel mode choice and trip distance: trends in Germany 1976–2002," Journal of Transport Geography, Elsevier, vol. 18(1), pages 75-84.
    14. Karen Lucas & Bert Wee & Kees Maat, 2016. "A method to evaluate equitable accessibility: combining ethical theories and accessibility-based approaches," Transportation, Springer, vol. 43(3), pages 473-490, May.
    15. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    16. Martens, Karel & Golub, Aaron & Robinson, Glenn, 2012. "A justice-theoretic approach to the distribution of transportation benefits: Implications for transportation planning practice in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 684-695.
    17. Pereira, Rafael H.M., 2019. "Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro," Journal of Transport Geography, Elsevier, vol. 74(C), pages 321-332.
    18. Givoni, Moshe & Rietveld, Piet, 2007. "The access journey to the railway station and its role in passengers' satisfaction with rail travel," Transport Policy, Elsevier, vol. 14(5), pages 357-365, September.
    19. R. Camporeale & L. Caggiani & A. Fonzone & M. Ottomanelli, 2017. "Quantifying the impacts of horizontal and vertical equity in transit route planning," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(1), pages 28-44, January.
    20. Huasheng Liu & Yu Li & Jin Li & Bowen Hou & Shuzhi Zhao, 2022. "Optimizing the Location of Park-and-Ride Facilities in Suburban and Urban Areas Considering the Characteristics of Coverage Requirements," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    21. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    22. Foth, Nicole & Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Towards equitable transit: examining transit accessibility and social need in Toronto, Canada, 1996–2006," Journal of Transport Geography, Elsevier, vol. 29(C), pages 1-10.
    23. Ryley, Tim J. & A. Stanley, Peter & P. Enoch, Marcus & M. Zanni, Alberto & A. Quddus, Mohammed, 2014. "Investigating the contribution of Demand Responsive Transport to a sustainable local public transport system," Research in Transportation Economics, Elsevier, vol. 48(C), pages 364-372.
    24. Delbosc, Alexa & Currie, Graham, 2011. "Using Lorenz curves to assess public transport equity," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1252-1259.
    25. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    26. Pajares, Elias & Büttner, Benjamin & Jehle, Ulrike & Nichols, Aaron & Wulfhorst, Gebhard, 2021. "Accessibility by proximity: Addressing the lack of interactive accessibility instruments for active mobility," Journal of Transport Geography, Elsevier, vol. 93(C).
    27. Hudyeron Rocha & António Lobo & José Pedro Tavares & Sara Ferreira, 2023. "Exploring Modal Choices for Sustainable Urban Mobility: Insights from the Porto Metropolitan Area in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    28. Halden, Derek, 2002. "Using accessibility measures to integrate land use and transport policy in Edinburgh and the Lothians," Transport Policy, Elsevier, vol. 9(4), pages 313-324, October.
    29. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    30. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    31. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    2. Jun Yang & Andong Guo & Xueming Li & Tai Huang, 2018. "Study of the Impact of a High-Speed Railway Opening on China’s Accessibility Pattern and Spatial Equality," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    3. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    4. Carleton, Phillip R. & Porter, J. David, 2018. "A comparative analysis of the challenges in measuring transit equity: definitions, interpretations, and limitations," Journal of Transport Geography, Elsevier, vol. 72(C), pages 64-75.
    5. Boisjoly, Geneviève & Serra, Bernardo & Oliveira, Gabriel T. & El-Geneidy, Ahmed, 2020. "Accessibility measurements in São Paulo, Rio de Janeiro, Curitiba and Recife, Brazil," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Xiaomin Wang & Wenxin Zhang, 2019. "Efficiency and Spatial Equity Impacts of High-Speed Rail on the Central Plains Economic Region of China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    8. Kaplan, Sigal & Popoks, Dmitrijs & Prato, Carlo Giacomo & Ceder, Avishai (Avi), 2014. "Using connectivity for measuring equity in transit provision," Journal of Transport Geography, Elsevier, vol. 37(C), pages 82-92.
    9. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    10. Luz, Gregorio & da Silva Portugal, Licinio, 2021. "Understanding Transport-Related Social Exclusion Through the Lens of Capabilities Approach," OSF Preprints 4d3uy, Center for Open Science.
    11. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    12. Dixit, Malvika & Chowdhury, Subeh & Cats, Oded & Brands, Ties & van Oort, Niels & Hoogendoorn, Serge, 2021. "Examining circuity of urban transit networks from an equity perspective," Journal of Transport Geography, Elsevier, vol. 91(C).
    13. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," SocArXiv ua2gj, Center for Open Science.
    14. repec:osf:socarx:y4jwk_v1 is not listed on IDEAS
    15. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    16. Nazari Adli, Saeid & Donovan, Stuart, 2018. "Right to the city: Applying justice tests to public transport investments," Transport Policy, Elsevier, vol. 66(C), pages 56-65.
    17. Asif Raza & Ming Zhong & Muhammad Safdar, 2022. "Evaluating Locational Preference of Urban Activities with the Time-Dependent Accessibility Using Integrated Spatial Economic Models," IJERPH, MDPI, vol. 19(14), pages 1-33, July.
    18. Xiaoshu Cao & Huiling Chen & Feiwen Liang & Wulin Wang, 2018. "Measurement and Spatial Differentiation Characteristics of Transit Equity: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    19. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," Transport Policy, Elsevier, vol. 74(C), pages 214-223.
    20. Pyrialakou, V. Dimitra & Gkritza, Konstantina & Fricker, Jon D., 2016. "Accessibility, mobility, and realized travel behavior: Assessing transport disadvantage from a policy perspective," Journal of Transport Geography, Elsevier, vol. 51(C), pages 252-269.
    21. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.