IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692325000286.html
   My bibliography  Save this article

How do built environment characteristics influence metro-bus transfer patterns across metro station types in Shanghai?

Author

Listed:
  • Shi, Yuji
  • Zeng, Luohuan

Abstract

Unravelling the complex relationship between metro-bus transfer behavior and the built environment is crucial for the construction of a sustainable urban public transportation system. The current research prominently emphasizes modeling station-level metro-bus transfer ridership in relation to the built environment that surrounds with transit stations, few has specially focused on exploring and comparing this relationship among various transit station types. Based on the case study of Shanghai central city, this research clustered metro stations according to the time-series similarity of metro-bus transfer ridership pattern by combining Derivative Dynamic Time Warping and K-medoids. Then, for each metro station group, the spatiotemporal heterogeneity and nonlinearity of built environment effects on transfer ridership pattern were examined simultaneously by applying an adapted GTWR-RF method that integrates Geographically and Temporally Weighted Regression (GTWR) and Random Forest (RF). Our empirical analysis confirmed the importance of key built environment determinants and their associations with transfer ridership vary significantly among different metro station types. Furthermore, this research highlighted the proposed GTWR-RF model, which considers both spatiotemporal heterogeneity and nonlinearity effects of the built environment on the transfer ridership, can significantly improve the prediction ability. These findings provide a comprehensive perspective for policymakers, enabling them to formulate transportation policies with consideration of station type specification and to bolster the overall public transportation usage in cities.

Suggested Citation

  • Shi, Yuji & Zeng, Luohuan, 2025. "How do built environment characteristics influence metro-bus transfer patterns across metro station types in Shanghai?," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000286
    DOI: 10.1016/j.jtrangeo.2025.104137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325000286
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    2. Yong, Juan & Zheng, Linjiang & Mao, Xiaowen & Tang, Xi & Gao, Ang & Liu, Weining, 2021. "Mining metro commuting mobility patterns using massive smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    3. Navarrete, Francisca Javiera & Ortúzar, Juan de Dios, 2013. "Subjective valuation of the transit transfer experience: The case of Santiago de Chile," Transport Policy, Elsevier, vol. 25(C), pages 138-147.
    4. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    5. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Yu, Zidong & Zhu, Xiaolin & Liu, Xintao, 2022. "Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong," Journal of Transport Geography, Elsevier, vol. 99(C).
    7. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    8. Fei Ma & Fei Liu & Kum Fai Yuen & Polin Lai & Qipeng Sun & Xiaodan Li, 2019. "Cascading Failures and Vulnerability Evolution in Bus–Metro Complex Bilayer Networks under Rainstorm Weather Conditions," IJERPH, MDPI, vol. 16(3), pages 1-30, January.
    9. Bahman Lahoorpoor & David Levinson, 2020. "Lahoorpoor, Bahman and Levinson, D. (2020) Catchment if you can: The effect of station entrance and exit locations on accessibility," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    10. Qingke Gao & Jianhong Fu & Yang Yu & Xuehua Tang, 2019. "Identification of urban regions’ functions in Chengdu, China, based on vehicle trajectory data," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    11. Li, Xijing & Zhang, Mengmeng & Wang, Jionghua, 2022. "The spatio-temporal relationship between land use and population distribution around new intercity railway stations: A case study on the Pearl River Delta region, China," Journal of Transport Geography, Elsevier, vol. 98(C).
    12. Yousefzadeh Barri, Elnaz & Farber, Steven & Jahanshahi, Hadi & Beyazit, Eda, 2022. "Understanding transit ridership in an equity context through a comparison of statistical and machine learning algorithms," Journal of Transport Geography, Elsevier, vol. 105(C).
    13. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    14. Cheng, Yung-Hsiang & Tseng, Wei-Chih, 2016. "Exploring the effects of perceived values, free bus transfer, and penalties on intermodal metro–bus transfer users' intention," Transport Policy, Elsevier, vol. 47(C), pages 127-138.
    15. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    16. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    17. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Yin, Chun & Cao, Jason & Sun, Bindong & Liu, Jiahang, 2023. "Exploring built environment correlates of walking for different purposes: Evidence for substitution," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    20. Junjun Wei & Kejun Long & Jian Gu & Qingling Ju & Piao Zhu, 2020. "Optimizing Bus Line Based on Metro-Bus Integration," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    21. Merlin, Louis A. & Singer, Matan & Levine, Jonathan, 2021. "Influences on transit ridership and transit accessibility in US urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 63-73.
    22. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    23. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    24. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    25. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    26. Bo Qiu & Wei (David) Fan, 2021. "Machine Learning Based Short-Term Travel Time Prediction: Numerical Results and Comparative Analyses," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    27. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    28. Chen Xie & Dexin Yu & Ciyun Lin & Xiaoyu Zheng & Bo Peng, 2022. "Exploring the Spatiotemporal Impacts of the Built Environment on Taxi Ridership Using Multisource Data," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    29. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    30. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    2. Cui, Mengying & Yu, Lijie & Nie, Shaoyu & Dai, Zhe & Ge, Ying-en & Levinson, David, 2025. "How do access and spatial dependency shape metro passenger flows," Journal of Transport Geography, Elsevier, vol. 123(C).
    3. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    4. Xin, Mengwei & Shalaby, Amer, 2024. "Investigation of the interaction between urban rail ridership and network topology characteristics using temporal lagged and reciprocal effects: A case study of Chengdu, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    6. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    7. Lei, Jiayou & He, Min & Shi, Zhuangbin & He, Mingwei & Liu, Yang & Qian, Qian & Qian, Huimin, 2024. "How does the built environment affect intermodal transit demand across different spatiotemporal contexts?," Journal of Transport Geography, Elsevier, vol. 121(C).
    8. Luan, Hui & Zhang, Shanqi & Fu, Xiao, 2024. "Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership," Journal of Transport Geography, Elsevier, vol. 121(C).
    9. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    10. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    11. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    12. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    13. Lo, Huai-Wei & Fang, Tzu-Yi & Lin, Sheng-Wei, 2024. "Integrating technological and strategic analysis: Evaluating the key determinants of transportation sustainability in taipei Mass Rapid Transit using the Rough-Fermatean DEMATEL approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    14. Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    15. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    16. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    17. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
    18. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    19. Jing Cheng & Xiaowei Luo, 2023. "Analyzing the Direction of Urban Function Renewal Based on the Complex Network," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    20. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.