IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v121y2024ics0966692324002412.html
   My bibliography  Save this article

Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership

Author

Listed:
  • Luan, Hui
  • Zhang, Shanqi
  • Fu, Xiao

Abstract

Statistical modeling of ridership over both space and time provides valuable insights on transportation planning and policies. Existing spatiotemporal studies, however, predominantly focus on analyzing a single type rather than multiple types of ridership, thus cannot leverage the correlation between different types of ridership. This study proposes a Bayesian multivariate spatiotemporal statistical model to jointly analyze multiple ridership over time. Specifically, the model accounts for correlation between multiple ridership based on different assumptions of space-time interactions (i.e., departures from the main spatial and temporal patterns) between different types of ridership as well as if covariates are included in the model. Using hourly bus and taxi ridership in the city of Wuhu, China as an example, the case study indicates that accounting for the correlation between the space-time interactions of each ridership, beyond the correlation between the main spatial patterns of the two ridership, further improves the statistical inferences of ridership modeling. In addition, the proposed approach enables the detection of spatial and spatiotemporal hotspots of each ridership as well as bus-taxi ratio hotspots using posterior probabilities. It also supports visual inspections regarding how the inclusion of covariates explains these hotspots. The proposed approach not only advances multivariate spatiotemporal statistical modeling of ridership, but can also provide useful insights on space- and time-specific transport policies at a granular resolution.

Suggested Citation

  • Luan, Hui & Zhang, Shanqi & Fu, Xiao, 2024. "Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership," Journal of Transport Geography, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002412
    DOI: 10.1016/j.jtrangeo.2024.104032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324002412
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    2. Kim, Kyoungok, 2018. "Exploring the difference between ridership patterns of subway and taxi: Case study in Seoul," Journal of Transport Geography, Elsevier, vol. 66(C), pages 213-223.
    3. Leo Kavanagh & Duncan Lee & Gwilym Pryce, 2016. "Is Poverty Decentralizing? Quantifying Uncertainty in the Decentralization of Urban Poverty," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1286-1298, November.
    4. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    5. Hui Luan & Yusuf Ransome, 2023. "County-Level Spatiotemporal Patterns of New HIV Diagnoses and Pre-exposure Prophylaxis (PrEP) Use in Mississippi, 2014–2018: A Bayesian Analysis of Publicly Accessible Censored Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 113(1), pages 129-148, January.
    6. Jiaoe Wang & Yanan Li & Jingjuan Jiao & Haitao Jin & Fangye Du, 2023. "Bus ridership and its determinants in Beijing: A spatial econometric perspective," Transportation, Springer, vol. 50(2), pages 383-406, April.
    7. Karnberger, Stephan & Antoniou, Constantinos, 2020. "Network–wide prediction of public transportation ridership using spatio–temporal link–level information," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Jie Bao & Zongbo Wang & Zhao Yang & Xiaoxuan Shan, 2023. "Exploring spatiotemporal patterns and influencing factors of ridesourcing and traditional taxi usage using geographically and temporally weighted regression method," Transportation Planning and Technology, Taylor & Francis Journals, vol. 46(3), pages 263-285, April.
    9. Yun Wang & Faiz Currim & Sudha Ram, 2022. "Deep Learning of Spatiotemporal Patterns for Urban Mobility Prediction Using Big Data," Information Systems Research, INFORMS, vol. 33(2), pages 579-598, June.
    10. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    11. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    12. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    13. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    14. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    15. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    16. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    17. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    18. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    19. Wenbo Zhang & Tho V. Le & Satish V. Ukkusuri & Ruimin Li, 2020. "Influencing factors and heterogeneity in ridership of traditional and app-based taxi systems," Transportation, Springer, vol. 47(2), pages 971-996, April.
    20. Zheng, Linjiang & Xia, Dong & Zhao, Xin & Tan, Longyou & Li, Hang & Chen, Li & Liu, Weining, 2018. "Spatial–temporal travel pattern mining using massive taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 24-41.
    21. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    22. Zhang, Lei & Hong, Jin Hyun & Nasri, Arefeh & Shen, Qing, 2012. "How built environment affects travel behavior: A comparative analysis of the connections between land use and vehicle miles traveled in US cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 40-52.
    23. Najafabadi, Shirin & Hamidi, Ali & Allahviranloo, Mahdieh & Devineni, Naresh, 2019. "Does demand for subway ridership in Manhattan depend on the rainfall events?," Transport Policy, Elsevier, vol. 74(C), pages 201-213.
    24. Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    25. Fangru Wang & Catherine L. Ross, 2019. "New potential for multimodal connection: exploring the relationship between taxi and transit in New York City (NYC)," Transportation, Springer, vol. 46(3), pages 1051-1072, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    2. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    3. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    4. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    5. Lei, Jiayou & He, Min & Shi, Zhuangbin & He, Mingwei & Liu, Yang & Qian, Qian & Qian, Huimin, 2024. "How does the built environment affect intermodal transit demand across different spatiotemporal contexts?," Journal of Transport Geography, Elsevier, vol. 121(C).
    6. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    7. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    8. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    9. Toger, Marina & Türk, Umut & Östh, John & Kourtit, Karima & Nijkamp, Peter, 2023. "Inequality in leisure mobility: An analysis of activity space segregation spectra in the Stockholm conurbation," Journal of Transport Geography, Elsevier, vol. 111(C).
    10. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    12. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    13. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    14. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    15. Bilgin, Pinar & Mattioli, Giulio & Morgan, Malcolm & Wadud, Zia, 2023. "The impacts of ridesourcing services on the taxi market: Empirical evidence from England and Wales," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    16. Yang, Haoran & Zhang, Qinran & Wen, Jing & Sun, Xu & Yang, Linchuan, 2024. "Multi-group exploration of the built environment and metro ridership: Comparison of commuters, seniors and students," Transport Policy, Elsevier, vol. 155(C), pages 189-207.
    17. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Tang, Tianli & Gu, Ziyuan & Yang, Yuanxuan & Sun, Haobo & Chen, Siyuan & Chen, Yuting, 2024. "A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    19. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    20. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.