IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1016-d80493.html
   My bibliography  Save this article

Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership

Author

Listed:
  • Dohyung Kim

    (Department of Urban and Regional Planning, California State Polytechnic University-Pomona, Pomona, CA 91768, USA)

  • Yongjin Ahn

    (Department of Urban and Regional Planning, Daegu University, Gyeongsan 38453, Korea)

  • Simon Choi

    (Department of Research and Analysis, Southern California Association of Governments, Los Angeles, CA 90017, USA)

  • Kwangkoo Kim

    (Department of Public Administration, Kyunghee University, Seoul 02447, Korea)

Abstract

Given the concerns about urban mobility, traffic congestion, and greenhouse gas (GHG) emissions, extensive research has explored the relationship between the built environment and transit ridership. However, the nature of aggregation and the cross-sectional approach of the research rarely provide essential clues on the potential of a transit system as a sustainable mobility option. From the perspective of longitudinal sustainability, this paper develops regression models for rail transit stations in the Los Angeles Metro system. These models attempt to identify the socio-demographic characteristics and land use features influencing longitudinal transit ridership changes. Step-wise ordinary least square (OLS) regression models are used to identify factors that contribute to transit ridership changes. Those factors include the number of dwelling units, employment-oriented land uses such as office and commercial land uses, and land use balance. The models suggest a negative relationship between job and population balance with transit ridership change. They also raise a question regarding the 0.4 km radius commonly used in transit analysis. The models indicate that the 0.4 km radius is too small to capture the significant influence of the built environment on transit ridership.

Suggested Citation

  • Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1016-:d:80493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dohyung Kim & Jooil Lee & Simon Choi, 2015. "Balancing mobility and CO 2 reduction by a mode share scheme: a comparison of Los Angeles and Seoul metropolitan areas," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 19(2), pages 168-181, July.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    4. repec:cdl:uctcwp:qt0d84c2f4 is not listed on IDEAS
    5. repec:cdl:uctcwp:qt9jd6r1t9 is not listed on IDEAS
    6. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.
    7. Gregory Thompson & Jeffrey Brown & Torsha Bhattacharya, 2012. "What Really Matters for Increasing Transit Ridership: Understanding the Determinants of Transit Ridership Demand in Broward County, Florida," Urban Studies, Urban Studies Journal Limited, vol. 49(15), pages 3327-3345, November.
    8. C J L Yewlett, 2001. "OR in strategic land-use planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(1), pages 4-13, January.
    9. Martin Wachs & Brian D. Taylor & Ned Levine & Paul Ong, 1993. "The Changing Commute: A Case-study of the Jobs-Housing Relationship over Time," Urban Studies, Urban Studies Journal Limited, vol. 30(10), pages 1711-1729, December.
    10. repec:cdl:uctcwp:qt7424635r is not listed on IDEAS
    11. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    12. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    13. repec:cdl:uctcwp:qt68r764df is not listed on IDEAS
    14. Arnold Tukker & Maurie J. Cohen, 2004. "Industrial Ecology and the Automotive Transport System," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 14-18, July.
    15. Jeffrey Brown & Gregory Thompson, 2008. "Examining the influence of multidestination service orientation on transit service productivity: a multivariate analysis," Transportation, Springer, vol. 35(2), pages 237-252, March.
    16. Ann Forsyth & Kevin Krizek, 2011. "Urban Design: Is there a Distinctive View from the Bicycle?," Journal of Urban Design, Taylor & Francis Journals, vol. 16(04), pages 531-549.
    17. Mizuki Kawabata & Qing Shen, 2007. "Commuting Inequality between Cars and Public Transit: The Case of the San Francisco Bay Area, 1990-2000," Urban Studies, Urban Studies Journal Limited, vol. 44(9), pages 1759-1780, August.
    18. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Luan, Hui & Zhang, Shanqi & Fu, Xiao, 2024. "Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership," Journal of Transport Geography, Elsevier, vol. 121(C).
    3. Ciyun Lin & Kang Wang & Dayong Wu & Bowen Gong, 2020. "Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Jeongwoo Lee & Marlon Boarnet & Douglas Houston & Hilary Nixon & Steven Spears, 2017. "Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
    5. André Luiz Lopes Toledo & Emílio Lèbre La Rovere, 2018. "Urban Mobility and Greenhouse Gas Emissions: Status, Public Policies, and Scenarios in a Developing Economy City, Natal, Brazil," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    6. Qingwen Xue & Lingzhi Cheng & Zhichao Li & Yingying Xing & Hongwei Wang & Hongwei Li & Yichuan Peng, 2025. "Unraveling Spatial–Temporal and Interactive Impact of Built Environment on Metro Ridership: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 17(21), pages 1-20, October.
    7. Tang, Tianli & Gu, Ziyuan & Yang, Yuanxuan & Sun, Haobo & Chen, Siyuan & Chen, Yuting, 2024. "A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    2. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    5. repec:cdl:uctcwp:qt0d84c2f4 is not listed on IDEAS
    6. Cui, Mengying & Yu, Lijie & Nie, Shaoyu & Dai, Zhe & Ge, Ying-en & Levinson, David, 2025. "How do access and spatial dependency shape metro passenger flows," Journal of Transport Geography, Elsevier, vol. 123(C).
    7. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    8. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    9. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    10. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    11. Collins, Patricia A. & MacFarlane, Robert, 2018. "Evaluating the determinants of switching to public transit in an automobile-oriented mid-sized Canadian city: A longitudinal analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 682-695.
    12. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    13. Kexin Lei & Quanhua Hou & Weijia Li & Meng Zhao & Jizhe Zhou & Lingda Zhang & Shihan Chen & Yaqiong Duan, 2022. "The Impact of Land Use on Time-Varying Passenger Flow Based on Site Classification," Land, MDPI, vol. 11(12), pages 1-19, December.
    14. Meng Zhao & Haiyan Tong & Bo Li & Yaqiong Duan & Yubai Li & Jianpo Wang & Kexin Lei, 2022. "Analysis of Land Use Optimization of Metro Station Areas Based on Two-Way Balanced Ridership in Xi’an," Land, MDPI, vol. 11(8), pages 1-20, July.
    15. Yuning Wang & Duanfang Lu & David Levinson, 2023. "Equilibrium or imbalance? Rail Transit and Land Use Mix in Station Areas," Transportation, Springer, vol. 50(6), pages 2403-2421, December.
    16. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    17. repec:cdl:uctcwp:qt68r764df is not listed on IDEAS
    18. Snizek, Bernhard & Sick Nielsen, Thomas Alexander & Skov-Petersen, Hans, 2013. "Mapping bicyclists’ experiences in Copenhagen," Journal of Transport Geography, Elsevier, vol. 30(C), pages 227-233.
    19. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    20. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    21. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    22. repec:cdl:uctcwp:qt9jd6r1t9 is not listed on IDEAS
    23. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1016-:d:80493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.