IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i6d10.1007_s11116-018-9944-x.html
   My bibliography  Save this article

Using best–worst scaling to identify barriers to walkability: a study of Porto Alegre, Brazil

Author

Listed:
  • Ana Margarita Larranaga

    (Federal University of Rio Grande do Sul)

  • Julián Arellana

    (Universidad del Norte)

  • Luis Ignacio Rizzi

    (Pontificia Universidad Católica de Chile)

  • Orlando Strambi

    (University of São Paulo-Escola Politécnica)

  • Helena Beatriz Bettella Cybis

    (Federal University of Rio Grande do Sul)

Abstract

This paper pursues three goals: (1) determining the relative importance of built environment barriers limiting walkability, (2) analyzing the existence of an asymmetry in the way people evaluate positive and negative built environment characteristics, and (3) identifying solutions to tackle the main barriers and quantify their impact in walkability. A best–worst scaling survey was developed to compare the importance of eight different attributes of the built environment regarding walkability. Model results show an asymmetry negative–positive in the judgment and choice of built environment characteristics that promote and impede walkability. The most important barriers, obtained from worst responses, are connectivity, topography, sidewalk surface and absence of policemen. Walkability scores were computed for different neighbourhoods and different policy scenarios were forecasted. Simulation results from the worst responses indicate that improvements in sidewalk quality, along with an increase in the number of police officers, lead to an 85% increase in the walkability score for the lower income neighbourhoods.

Suggested Citation

  • Ana Margarita Larranaga & Julián Arellana & Luis Ignacio Rizzi & Orlando Strambi & Helena Beatriz Bettella Cybis, 2019. "Using best–worst scaling to identify barriers to walkability: a study of Porto Alegre, Brazil," Transportation, Springer, vol. 46(6), pages 2347-2379, December.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:6:d:10.1007_s11116-018-9944-x
    DOI: 10.1007/s11116-018-9944-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9944-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9944-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louviere, Jordan J. & Islam, Towhidul, 2008. "A comparison of importance weights and willingness-to-pay measures derived from choice-based conjoint, constant sum scales and best-worst scaling," Journal of Business Research, Elsevier, vol. 61(9), pages 903-911, September.
    2. Jinhyun Hong & Cynthia Chen, 2014. "The role of the built environment on perceived safety from crime and walking: examining direct and indirect impacts," Transportation, Springer, vol. 41(6), pages 1171-1185, November.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Park, Sungjin, 2008. "Defining, Measuring, and Evaluating Path Walkability, and Testing Its Impacts on Transit Users’ Mode Choice and Walking Distance to the Station," University of California Transportation Center, Working Papers qt0ct7c30p, University of California Transportation Center.
    5. Geraint Ellis & Ruth Hunter & Mark A Tully & Michael Donnelly & Luke Kelleher & Frank Kee, 2016. "Connectivity and physical activity: using footpath networks to measure the walkability of built environments," Environment and Planning B, , vol. 43(1), pages 130-151, January.
    6. Paul M. Herr & Christine M. Page & Bruce E. Pfeiffer & Derick F. Davis, 2012. "Affective Influences on Evaluative Processing," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 38(5), pages 833-845.
    7. Zohreh Asadi-Shekari & Mehdi Moeinaddini & Muhammad Zaly Shah, 2013. "Non-motorised Level of Service: Addressing Challenges in Pedestrian and Bicycle Level of Service," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 166-194, March.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
    10. Kelly, C.E. & Tight, M.R. & Hodgson, F.C. & Page, M.W., 2011. "A comparison of three methods for assessing the walkability of the pedestrian environment," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1500-1508.
    11. Sangyoup Kim & Jaisung Choi & Sunggyu Kim, 2013. "Roadside walking environments and major factors affecting pedestrian level of service," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(3), pages 304-315, November.
    12. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    13. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    14. Cerin, Ester & Leslie, Eva & Owen, Neville, 2009. "Explaining socio-economic status differences in walking for transport: An ecological analysis of individual, social and environmental factors," Social Science & Medicine, Elsevier, vol. 68(6), pages 1013-1020, March.
    15. Lancsar, Emily & Louviere, Jordan & Flynn, Terry, 2007. "Several methods to investigate relative attribute impact in stated preference experiments," Social Science & Medicine, Elsevier, vol. 64(8), pages 1738-1753, April.
    16. Susan Handy & Kelly Clifton, 2001. "Local shopping as a strategy for reducing automobile travel," Transportation, Springer, vol. 28(4), pages 317-346, November.
    17. Balbontin, C. & Ortúzar, J. de D. & Swait, J.D., 2015. "A joint best–worst scaling and stated choice model considering observed and unobserved heterogeneity: An application to residential location choice," Journal of choice modelling, Elsevier, vol. 16(C), pages 1-14.
    18. Liang Ma & Corinne Mulley & Wen Liu, 2017. "Social marketing and the built environment: What matters for travel behaviour change?," Transportation, Springer, vol. 44(5), pages 1147-1167, September.
    19. Jamie Spinney & Hugh Millward, 2010. "Time and Money: A New Look at Poverty and the Barriers to Physical Activity in Canada," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 99(2), pages 341-356, November.
    20. Christopher Zegras, 2010. "The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile," Urban Studies, Urban Studies Journal Limited, vol. 47(8), pages 1793-1817, July.
    21. Khan, Mobashwir & M. Kockelman, Kara & Xiong, Xiaoxia, 2014. "Models for anticipating non-motorized travel choices, and the role of the built environment," Transport Policy, Elsevier, vol. 35(C), pages 117-126.
    22. Dias, José António & Dias, José G. & Lages, Carmen, 2017. "Can negative characters in soap operas be positive for product placement?," Journal of Business Research, Elsevier, vol. 71(C), pages 125-132.
    23. Sehatzadeh, Bahareh & Noland, Robert B. & Weiner, Marc D., 2011. "Walking frequency, cars, dogs, and the built environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 741-754, October.
    24. Pikora, Terri & Giles-Corti, Billie & Bull, Fiona & Jamrozik, Konrad & Donovan, Rob, 2003. "Developing a framework for assessment of the environmental determinants of walking and cycling," Social Science & Medicine, Elsevier, vol. 56(8), pages 1693-1703, April.
    25. Daly, Andrew & Dekker, Thijs & Hess, Stephane, 2016. "Dummy coding vs effects coding for categorical variables: Clarifications and extensions," Journal of choice modelling, Elsevier, vol. 21(C), pages 36-41.
    26. Peiravian, Farideddin & Derrible, Sybil & Ijaz, Farukh, 2014. "Development and application of the Pedestrian Environment Index (PEI)," Journal of Transport Geography, Elsevier, vol. 39(C), pages 73-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    2. Natalia Distefano & Salvatore Leonardi & Nilda Georgina Liotta, 2023. "Walking for Sustainable Cities: Factors Affecting Users’ Willingness to Walk," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    3. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    4. Guzman, Luis A. & Arellana, Julian & Alvarez, Vilma, 2020. "Confronting congestion in urban areas: Developing Sustainable Mobility Plans for public and private organizations in Bogotá," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 321-335.
    5. Arellana, Julián & Alvarez, Vilma & Oviedo, Daniel & Guzman, Luis A., 2021. "Walk this way: Pedestrian accessibility and equity in Barranquilla and Soledad, Colombia," Research in Transportation Economics, Elsevier, vol. 86(C).
    6. Laura Eboli & Carmen Forciniti & Gabriella Mazzulla & Maria Grazia Bellizzi, 2023. "Establishing Performance Criteria for Evaluating Pedestrian Environments," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    7. Amaya, Johanna & Arellana, Julian & Delgado-Lindeman, Maira, 2020. "Stakeholders perceptions to sustainable urban freight policies in emerging markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 329-348.
    8. Luis A. Guzman & Victor A. Cantillo-Garcia & Julian Arellana & Olga L. Sarmiento, 2023. "User expectations and perceptions towards new public transport infrastructure: evaluating a cable car in Bogotá," Transportation, Springer, vol. 50(3), pages 751-771, June.
    9. Guzman, Luis A. & Peña, Javier & Carrasco, Juan Antonio, 2020. "Assessing the role of the built environment and sociodemographic characteristics on walking travel distances in Bogotá," Journal of Transport Geography, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    2. Sheila Ferrer & Tomás Ruiz, 2017. "Comparison on travel scheduling between driving and walking trips by habitual car users," Transportation, Springer, vol. 44(1), pages 27-48, January.
    3. Ferrer, Sheila & Ruiz, Tomás, 2018. "The impact of the built environment on the decision to walk for short trips: Evidence from two Spanish cities," Transport Policy, Elsevier, vol. 67(C), pages 111-120.
    4. Seung-Nam Kim & Juwon Chung & Junseung Lee, 2022. "Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea," Land, MDPI, vol. 11(10), pages 1-22, October.
    5. Fancello, Giovanna & Congiu, Tanja & Tsoukiàs, Alexis, 2020. "Mapping walkability. A subjective value theory approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    6. Feucht, Yvonne & Zander, Katrin, 2017. "Consumers’ attitudes on carbon footprint labelling. Results of the SUSDIET project," Thünen Working Paper 266396, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    7. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Trichês Lucchesi, Shanna & Larranaga, Ana Margarita & Bettella Cybis, Helena Beatriz & Abreu e Silva, João António de & Arellana, Julian Alberto, 2021. "Are people willing to pay more to live in a walking environment? A multigroup analysis of the impact of walkability on real estate values and their moderation effects in two Global South cities," Research in Transportation Economics, Elsevier, vol. 86(C).
    9. Joseph F. Hair & Christian M. Ringle & Siegfried P. Gudergan & Andreas Fischer & Christian Nitzl & Con Menictas, 2019. "Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice," Business Research, Springer;German Academic Association for Business Research, vol. 12(1), pages 115-142, April.
    10. Hong, Jinhyun, 2016. "How does the seasonality influence utilitarian walking behaviour in different urbanization settings in Scotland?," Social Science & Medicine, Elsevier, vol. 162(C), pages 143-150.
    11. Shoji, Isao & Kanehiro, Sumei, 2016. "Disposition effect as a behavioral trading activity elicited by investors' different risk preferences," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 104-112.
    12. Boone, Jan & Sadrieh, Abdolkarim & van Ours, Jan C., 2009. "Experiments on unemployment benefit sanctions and job search behavior," European Economic Review, Elsevier, vol. 53(8), pages 937-951, November.
    13. Jos'e Cl'audio do Nascimento, 2019. "Behavioral Biases and Nonadditive Dynamics in Risk Taking: An Experimental Investigation," Papers 1908.01709, arXiv.org, revised Apr 2023.
    14. Francesco GUALA, 2017. "Preferences: Neither Behavioural nor Mental," Departmental Working Papers 2017-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    15. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    16. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    17. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    18. Goytom Abraha Kahsay & Daniel Osberghaus, 2018. "Storm Damage and Risk Preferences: Panel Evidence from Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 301-318, September.
    19. Carolin Bock & Maximilian Schmidt, 2015. "Should I stay, or should I go? – How fund dynamics influence venture capital exit decisions," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 68-82, November.
    20. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:6:d:10.1007_s11116-018-9944-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.