IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i1d10.1007_s11116-015-9622-1.html
   My bibliography  Save this article

Learning daily activity patterns with probabilistic grammars

Author

Listed:
  • Siyu Li

    () (National University of Singapore)

  • Der-Horng Lee

    () (National University of Singapore)

Abstract

Abstract Daily activity pattern is the reflection and abstraction of actual individual activity participation on daily basis. It carries information on activity type, frequency and sequence. Preference of daily activity patterns varies among population, and thus can be interpreted as personal life styles. This paper advances studies on human daily activity patterns by providing new perspective and methodology in the modeling and learning of daily activity patterns using probabilistic context-free grammars. In this paper, similarities between daily activity pattern—which is defined as activity sequence—and language are explored. We developed context-free grammars to parse and generate daily activity patterns. To replicate people’s heterogeneity in selecting daily activity patterns, we introduced probabilistic context-free grammars and proposed several formulations to estimate the probability of a context-free grammar with daily activity patterns observed in household travel survey. We conducted experiments on the proposed formulations, finding that under proper context-free grammar and problem formulation, the estimated probabilistic context-free grammar is able to reproduce the observed pattern distribution in household travel survey with satisfactory precision. Practically, the proposed methodology sheds light on the issue of generating stochastic and accessibility-dependent choice sets for daily activity pattern models in certain activity-based modeling frameworks.

Suggested Citation

  • Siyu Li & Der-Horng Lee, 2017. "Learning daily activity patterns with probabilistic grammars," Transportation, Springer, vol. 44(1), pages 49-68, January.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9622-1
    DOI: 10.1007/s11116-015-9622-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-015-9622-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric I. Pas, 1983. "A Flexible and Integrated Methodology for Analytical Classification of Daily Travel-Activity Behavior," Transportation Science, INFORMS, vol. 17(4), pages 405-429, November.
    2. Sigal Kaplan & Shlomo Bekhor & Yoram Shiftan, 2011. "Development and estimation of a semi-compensatory residential choice model based on explicit choice protocols," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(1), pages 51-80, August.
    3. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    4. Sunhee Sang & Morton O’Kelly & Mei-Po Kwan, 2011. "Examining Commuting Patterns," Urban Studies, Urban Studies Journal Limited, vol. 48(5), pages 891-909, April.
    5. E I Pas, 1984. "The Effect of Selected Sociodemographic Characteristics on Daily Travel-Activity Behavior," Environment and Planning A, , vol. 16(5), pages 571-581, May.
    6. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    7. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7nq9p0cv, University of California Transportation Center.
    8. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    9. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7ng2z24q, University of California Transportation Center.
    10. E I Pas, 1984. "The effect of selected sociodemographic characteristics on daily travel-activity behavior," Environment and Planning A, Pion Ltd, London, vol. 16(5), pages 571-581, May.
    11. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    12. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    13. Marisol Castro & Francisco Martínez & Marcela Munizaga, 2013. "Estimation of a constrained multinomial logit model," Transportation, Springer, vol. 40(3), pages 563-581, May.
    14. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    15. Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
    16. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9622-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.