IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i1d10.1007_s11116-015-9622-1.html
   My bibliography  Save this article

Learning daily activity patterns with probabilistic grammars

Author

Listed:
  • Siyu Li

    (National University of Singapore)

  • Der-Horng Lee

    (National University of Singapore)

Abstract

Daily activity pattern is the reflection and abstraction of actual individual activity participation on daily basis. It carries information on activity type, frequency and sequence. Preference of daily activity patterns varies among population, and thus can be interpreted as personal life styles. This paper advances studies on human daily activity patterns by providing new perspective and methodology in the modeling and learning of daily activity patterns using probabilistic context-free grammars. In this paper, similarities between daily activity pattern—which is defined as activity sequence—and language are explored. We developed context-free grammars to parse and generate daily activity patterns. To replicate people’s heterogeneity in selecting daily activity patterns, we introduced probabilistic context-free grammars and proposed several formulations to estimate the probability of a context-free grammar with daily activity patterns observed in household travel survey. We conducted experiments on the proposed formulations, finding that under proper context-free grammar and problem formulation, the estimated probabilistic context-free grammar is able to reproduce the observed pattern distribution in household travel survey with satisfactory precision. Practically, the proposed methodology sheds light on the issue of generating stochastic and accessibility-dependent choice sets for daily activity pattern models in certain activity-based modeling frameworks.

Suggested Citation

  • Siyu Li & Der-Horng Lee, 2017. "Learning daily activity patterns with probabilistic grammars," Transportation, Springer, vol. 44(1), pages 49-68, January.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9622-1
    DOI: 10.1007/s11116-015-9622-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-015-9622-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-015-9622-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Eric I. Pas, 1983. "A Flexible and Integrated Methodology for Analytical Classification of Daily Travel-Activity Behavior," Transportation Science, INFORMS, vol. 17(4), pages 405-429, November.
    2. Sigal Kaplan & Shlomo Bekhor & Yoram Shiftan, 2011. "Development and estimation of a semi-compensatory residential choice model based on explicit choice protocols," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(1), pages 51-80, August.
    3. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    4. Sunhee Sang & Morton O’Kelly & Mei-Po Kwan, 2011. "Examining Commuting Patterns," Urban Studies, Urban Studies Journal Limited, vol. 48(5), pages 891-909, April.
    5. E I Pas, 1984. "The Effect of Selected Sociodemographic Characteristics on Daily Travel-Activity Behavior," Environment and Planning A, , vol. 16(5), pages 571-581, May.
    6. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    7. repec:cdl:uctcwp:qt7nq9p0cv is not listed on IDEAS
    8. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    9. repec:cdl:uctcwp:qt7ng2z24q is not listed on IDEAS
    10. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    11. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    12. Marisol Castro & Francisco Martínez & Marcela Munizaga, 2013. "Estimation of a constrained multinomial logit model," Transportation, Springer, vol. 40(3), pages 563-581, May.
    13. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    14. Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
    15. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wim Ectors & Bruno Kochan & Davy Janssens & Tom Bellemans & Geert Wets, 2019. "Exploratory analysis of Zipf’s universal power law in activity schedules," Transportation, Springer, vol. 46(5), pages 1689-1712, October.
    2. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    3. Nayak, Suchismita & Pandit, Debapratim, 2025. "Daily activity-travel pattern identification using natural language processing and semantic matching," Journal of Transport Geography, Elsevier, vol. 122(C).
    4. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
    5. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ton, Danique & Bekhor, Shlomo & Cats, Oded & Duives, Dorine C. & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2020. "The experienced mode choice set and its determinants: Commuting trips in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 744-758.
    2. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    3. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    4. Dharmowijoyo, Dimas B.E. & Susilo, Yusak O. & Karlström, Anders, 2017. "Analysing the complexity of day-to-day individual activity-travel patterns using a multidimensional sequence alignment model: A case study in the Bandung Metropolitan Area, Indonesia," Journal of Transport Geography, Elsevier, vol. 64(C), pages 1-12.
    5. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2015. "Understanding time use: Daily or weekly data?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 38-57.
    6. Swait, Joffre & Adamowicz, Wiktor, 2001. "Choice Environment, Market Complexity, and Consumer Behavior: A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of Consumer Choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 86(2), pages 141-167, November.
    7. Haab, Timothy C. & Hicks, Robert L., 1997. "Accounting for Choice Set Endogeneity in Random Utility Models of Recreation Demand," Journal of Environmental Economics and Management, Elsevier, vol. 34(2), pages 127-147, October.
    8. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    9. Luo, Lichen & Parady, Giancarlos & Takami, Kiyoshi, 2024. "Evaluating the impact of automated vehicles on residential location distribution using activity-based accessibility: A case study of Japanese regional areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    10. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    11. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    12. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2016. "Variability in daily activity-travel patterns: the case of a one-week travel diary," Post-Print halshs-01389479, HAL.
    13. Swait, Joffre, 2009. "Choice models based on mixed discrete/continuous PDFs," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 766-783, August.
    14. Andre Carrel & Raja Sengupta & Joan L. Walker, 2017. "The San Francisco Travel Quality Study: tracking trials and tribulations of a transit taker," Transportation, Springer, vol. 44(4), pages 643-679, July.
    15. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    16. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    17. Ciscal-Terry, Wilner & Dell'Amico, Mauro & Hadjidimitriou, Natalia Selini & Iori, Manuel, 2016. "An analysis of drivers route choice behaviour using GPS data and optimal alternatives," Journal of Transport Geography, Elsevier, vol. 51(C), pages 119-129.
    18. Kim, Hyun No & Boxall, Peter C. & Adamowicz, W.L.(Vic), 2019. "Analysis of the economic impact of water management policy on residential prices: Modifying choice set formation in a discrete house choice analysis," Journal of choice modelling, Elsevier, vol. 33(C).
    19. Bruno Wichmann & Minjie Chen & Wiktor Adamowicz, 2016. "Social Networks and Choice Set Formation in Discrete Choice Models," Econometrics, MDPI, vol. 4(4), pages 1-26, October.
    20. Vij, Akshay & Gorripaty, Sreeta & Walker, Joan L., 2017. "From trend spotting to trend ’splaining: Understanding modal preference shifts in the San Francisco Bay Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 238-258.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9622-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.