IDEAS home Printed from
   My bibliography  Save this article

Common knowledge and limit knowledge


  • Christian Bach


  • Jérémie Cabessa



We study the relationship between common knowledge and the sequence of iterated mutual knowledge from a topological point of view. It is shown that common knowledge is not equivalent to the limit of the sequence of iterated mutual knowledge. On that account the new epistemic operator limit knowledge is introduced and analyzed in the context of games. Indeed, an example is constructed where the behavioral implications of limit knowledge of rationality strictly refine those of common knowledge of rationality. More generally, it is then shown that limit knowledge of rationality is capable of characterizing any solution concept for some appropriate epistemic-topological conditions. Finally, some perspectives of a topologically enriched epistemic framework for games are discussed. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Christian Bach & Jérémie Cabessa, 2012. "Common knowledge and limit knowledge," Theory and Decision, Springer, vol. 73(3), pages 423-440, September.
  • Handle: RePEc:kap:theord:v:73:y:2012:i:3:p:423-440 DOI: 10.1007/s11238-011-9257-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Aumann, Robert J., 1996. "Reply to Binmore," Games and Economic Behavior, Elsevier, vol. 17(1), pages 138-146, November.
    2. Martin Dufwenberg & Mark Stegeman, 2002. "Existence and Uniqueness of Maximal Reductions Under Iterated Strict Dominance," Econometrica, Econometric Society, vol. 70(5), pages 2007-2023, September.
    3. Robert Aumann & Adam Brandenburger, 2014. "Epistemic Conditions for Nash Equilibrium," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 5, pages 113-136 World Scientific Publishing Co. Pte. Ltd..
    4. Robert J. Aumann, 1999. "Interactive epistemology II: Probability," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 301-314.
    5. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    6. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    7. Aumann, Robert J., 1998. "On the Centipede Game," Games and Economic Behavior, Elsevier, vol. 23(1), pages 97-105, April.
    8. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    9. Robert J. Aumann, 1998. "Common Priors: A Reply to Gul," Econometrica, Econometric Society, vol. 66(4), pages 929-938, July.
    10. Robert J. Aumann, 1999. "Interactive epistemology I: Knowledge," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 263-300.
    11. Robert J. Aumann, 2005. "Musings on Information and Knowledge," Econ Journal Watch, Econ Journal Watch, vol. 2(1), pages 88-96, April.
    12. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    13. Borgers, Tilman, 1993. "Pure Strategy Dominance," Econometrica, Econometric Society, vol. 61(2), pages 423-430, March.
    14. Lipman Barton L., 1994. "A Note on the Implications of Common Knowledge of Rationality," Games and Economic Behavior, Elsevier, vol. 6(1), pages 114-129, January.
    15. Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:73:y:2012:i:3:p:423-440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.