IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v53y2020i1d10.1007_s11123-019-00567-4.html
   My bibliography  Save this article

The importance of research teams with diverse backgrounds: Research collaboration in the Journal of Productivity Analysis

Author

Listed:
  • Hyun-do Choi

    (Dongguk University - Seoul)

  • Dong-hyun Oh

    () (College of Engineering, Inha University)

Abstract

The Journal of Productivity Analysis (JPA) is a pioneering academic journal that aims to develop new methodologies for efficiency and productivity measurement and apply them into various fields. Collaboration between the contributing authors in JPA who are from various countries, institutes, and disciplines/fields makes it possible to affect the quality of articles. Drawing from bibliographic article information, this paper finds stylized facts from author and keyword networks, and the efficiency of JPA’s major authors. We then examine research collaboration effects in JPA by using a research impact measurement technique. Empirical findings show that author and keyword networks changed over time, and that collaboration across various authors, institutional types and continents is positively associated with research impact.

Suggested Citation

  • Hyun-do Choi & Dong-hyun Oh, 2020. "The importance of research teams with diverse backgrounds: Research collaboration in the Journal of Productivity Analysis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 5-19, February.
  • Handle: RePEc:kap:jproda:v:53:y:2020:i:1:d:10.1007_s11123-019-00567-4
    DOI: 10.1007/s11123-019-00567-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-019-00567-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. W. Erwin Diewert & Ann Marie Smith, 1994. "Productivity Measurement for a Distribution Firm," NBER Working Papers 4812, National Bureau of Economic Research, Inc.
    4. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    5. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    6. Henry Tulkens, 1993. "On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit," Journal of Productivity Analysis, Springer, vol. 4(1), pages 183-210, June.
    7. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    8. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    9. Jeong-Dong Lee & Chulwoo Baek & Ho-Sung Kim & Jin-Seok Lee, 2014. "Development pattern of the DEA research field: a social network analysis approach," Journal of Productivity Analysis, Springer, vol. 41(2), pages 175-186, April.
    10. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
    11. Leydesdorff, Loet & Meyer, Martin, 2006. "Triple Helix indicators of knowledge-based innovation systems: Introduction to the special issue," Research Policy, Elsevier, vol. 35(10), pages 1441-1449, December.
    12. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    13. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    16. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    17. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Collaboration; Research impact; Network analysis; Efficiency;

    JEL classification:

    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:53:y:2020:i:1:d:10.1007_s11123-019-00567-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.