IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v67y2017i4d10.1007_s10640-016-0004-8.html
   My bibliography  Save this article

Decentralized Management Hinders Coastal Climate Adaptation: The Spatial-dynamics of Beach Nourishment

Author

Listed:
  • Sathya Gopalakrishnan

    () (The Ohio State University)

  • Dylan McNamara

    (UNC Wilmington)

  • Martin D. Smith

    (Duke University)

  • A. Brad Murray

    (Duke University)

Abstract

Climate change threatens to alter coastline erosion patterns in space and time and coastal communities adapt to these threats with decentralized shoreline stabilization measures. We model interactions between two neighboring towns, and explore welfare implications of spatial-dynamic feedbacks in the coastal zone. When communities are adjacent, the community with a wider beach loses sand to the community with a narrower beach through alongshore sediment transport. Spatial-dynamic feedbacks create incentives for both communities to nourish less, resulting in lower long-run beach width and lower property values in both communities, a result that parallels the classic prisoner’s dilemma. Intensifying erosion—consistent with accelerating sea level rise—increases the losses from failure to coordinate. Higher erosion also increases inequality in the distribution of benefits across communities under spatially coordinated management. This disincentive to coordinate suggests the need for higher-level government intervention to address a traditionally local problem. We show that a spatially targeted subsidy can achieve the first best outcome, and explore conditions under which a second-best uniform subsidy leads to small or large losses.

Suggested Citation

  • Sathya Gopalakrishnan & Dylan McNamara & Martin D. Smith & A. Brad Murray, 2017. "Decentralized Management Hinders Coastal Climate Adaptation: The Spatial-dynamics of Beach Nourishment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 761-787, August.
  • Handle: RePEc:kap:enreec:v:67:y:2017:i:4:d:10.1007_s10640-016-0004-8
    DOI: 10.1007/s10640-016-0004-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-016-0004-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parker, Dawn C. & Munroe, Darla K., 2007. "The geography of market failure: Edge-effect externalities and the location and production patterns of organic farming," Ecological Economics, Elsevier, vol. 60(4), pages 821-833, February.
    2. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    3. Gopalakrishnan, Sathya & Smith, Martin D. & Slott, Jordan M. & Murray, A. Brad, 2011. "The value of disappearing beaches: A hedonic pricing model with endogenous beach width," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 297-310, May.
    4. Sanchirico, James N. & Wilen, James E., 2005. "Optimal spatial management of renewable resources: matching policy scope to ecosystem scale," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 23-46, July.
    5. David J. Lewis & Bradford L. Barham & Brian Robinson, 2011. "Are There Spatial Spillovers in the Adoption of Clean Technology? The Case of Organic Dairy Farming," Land Economics, University of Wisconsin Press, vol. 87(2), pages 250-267.
    6. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    7. Craig E. Landry & Paul Hindsley, 2011. "Valuing Beach Quality with Hedonic Property Models," Land Economics, University of Wisconsin Press, vol. 87(1), pages 92-108.
    8. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, September.
    9. Bhat, Mahadev G. & Huffaker, Ray G., 2007. "Management of a transboundary wildlife population: A self-enforcing cooperative agreement with renegotiation and variable transfer payments," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 54-67, January.
    10. Charles F. Mason & John A. List, 1999. "Spatial aspects of pollution control when pollutants have synergistic effects: Evidence from a differential game with asymmetric information," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 33(4), pages 439-452.
    11. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    12. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    13. Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Megan Mullin & Martin D. Smith & Dylan E. McNamara, 2019. "Paying to save the beach: effects of local finance decisions on coastal management," Climatic Change, Springer, vol. 152(2), pages 275-289, January.
    2. Beasley, William J. & Dundas, Steven J., 2018. "Hold the Line: The Determinants of shoreline armoring as an adaptive response," 2018 Annual Meeting, August 5-7, Washington, D.C. 274442, Agricultural and Applied Economics Association.
    3. Qiu, Yun & Gopalakrishnan, Sathya, 2018. "Shoreline defense against climate change and capitalized impact of beach nourishment," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 134-147.
    4. Yun Qiu & Sathya Gopalakrishnan & H. Allen Klaiber & Xiaoyu Li, 0. "Dredging the sand commons: the economic and geophysical drivers of beach nourishment," Climatic Change, Springer, vol. 0, pages 1-21.
    5. Yun Qiu & Sathya Gopalakrishnan & H. Allen Klaiber & Xiaoyu Li, 2020. "Dredging the sand commons: the economic and geophysical drivers of beach nourishment," Climatic Change, Springer, vol. 162(2), pages 363-383, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:67:y:2017:i:4:d:10.1007_s10640-016-0004-8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.