IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v5y1995i1p29-49.html
   My bibliography  Save this article

Optimal combination of pollution prevention and abatement policies: The case of agricultural drainage

Author

Listed:
  • Farhed Shah
  • David Zilberman
  • Erik Lichtenberg

Abstract

The adoption of pollution prevention and abatement practices is examined in the context of a model of exhaustible resource use with a backstop technology. For the sake of concreteness, the paper focuses on the problem of water-logging caused by the subsurface accumulation of agricultural drainwater. In modelling this problem, a region's underground capacity to store drainwater is considered an exhaustible resource, while the installation of subsurface drainage is viewed as the corresponding backstop technology (or abatement practice). The exhaustible resource is typically over-exploited due to common access problems, which forces a suboptimally fast adoption of the abatement practice. Conservationist irrigation technologies, such as drip and sprinkler systems, tend to reduce drainwater generation, and their adoption could increase social welfare by delaying the abatement stage. Public policies are suggested to increase the adoption of such conservationist technologies. Data from California is used to illustrate the results and to demonstrate the efficacy of the model for policy purposes. While the setting used for the analysis in this paper is quite specific (i.e., water-logging), the same general modelling ideas may be applied to many other problems of environmental degradation. Copyright Kluwer Academic Publishers 1995

Suggested Citation

  • Farhed Shah & David Zilberman & Erik Lichtenberg, 1995. "Optimal combination of pollution prevention and abatement policies: The case of agricultural drainage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(1), pages 29-49, January.
  • Handle: RePEc:kap:enreec:v:5:y:1995:i:1:p:29-49
    DOI: 10.1007/BF00691908
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00691908
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00691908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marca Weinberg & Catherine L. Kling & James E. Wilen, 1993. "Water Markets and Water Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 278-291.
    2. Regev, Uri & Shalit, Haim & Gutierrez, A. P., 1983. "On the optimal allocation of pesticides with increasing resistance: The case of alfalfa weevil," Journal of Environmental Economics and Management, Elsevier, vol. 10(1), pages 86-100, March.
    3. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    4. Morton I. Kamien & Nancy L. Schwartz, 1978. "Optimal Exhaustible Resource Depletion with Endogenous Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(1), pages 179-196.
    5. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    6. Heal, Geoffrey M., 1993. "The optimal use of exhaustible resources," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 18, pages 855-880, Elsevier.
    7. Margriet Caswell & Erik Lichtenberg & David Zilberman, 1990. "The Effects of Pricing Policies on Water Conservation and Drainage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 883-890.
    8. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    9. Dasgupta, Partha & Stiglitz, Joseph, 1981. "Resource Depletion under Technological Uncertainty," Econometrica, Econometric Society, vol. 49(1), pages 85-104, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiangfeng, 2001. "Dynamic Water Regulation Under Endogenous Irrigation Investment and Production Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20661, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Knapp, Keith C. & Baerenklau, Kenneth A., 2006. "Ground Water Quantity and Quality Management: Agricultural Production and Aquifer Salinization over Long Time Scales," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-26, December.
    3. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    4. Wang,Hua*Ming Chen, 1999. "How the Chinese system of charges and subsidies affects pollution control efforts by China's top industrial polluters," Policy Research Working Paper Series 2198, The World Bank.
    5. Schwabe, Kurt A. & Knapp, Keith C. & Kan, Iddo, 2002. "Integrated Drainwater Management In Irrigated Agriculture," 2002 Annual meeting, July 28-31, Long Beach, CA 19609, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Iddo Kan, 2008. "Yield quality and irrigation with saline water under environmental limitations: the case of processing tomatoes in California," Agricultural Economics, International Association of Agricultural Economists, vol. 38(1), pages 57-66, January.
    7. Xabadia, Angels & Goetz, Renan U. & Zilberman, David, 2006. "Control of accumulating stock pollution by heterogeneous producers," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1105-1130, July.
    8. Zilberman, David & Khanna, Madhu & Lipper, Leslie, 1996. "Economics of Sustainable Agriculture," 1996 Conference (40th), February 11-16, 1996, Melbourne, Australia 149658, Australian Agricultural and Resource Economics Society.
    9. Xabadia, M. Àngels & Goetz, Renan U. & Zilberman, David, 2004. "Spatially and Intertemporally Efficient Management of Waterlogging," Working Papers of the Department of Economics, University of Girona 9, Department of Economics, University of Girona.
    10. Zilberman, David & Khanna, Madhu & Lipper, Leslie, 1997. "Economics of new technologies for sustainable agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 41(1), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    2. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    3. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    4. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    5. Kan, Iddo & Schwabe, Kurt A. & Knapp, Keith C., 2002. "Microeconomics Of Irrigation With Saline Water," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-24, July.
    6. Khanna, Madhu & Zilberman, David, 1997. "Incentives, precision technology and environmental protection," Ecological Economics, Elsevier, vol. 23(1), pages 25-43, October.
    7. Sudhakar D. Deshmukh & Stanley R. Pliska, 1981. "Optimal Consumption of A Nonrenewable Resource with Stochastic Discoveries and a Random Environment," Discussion Papers 500, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    8. Sudhakar D. Deshmukh & Stanley R. Pliska, 1981. "Natural Energy Resource Decisions and Prices Involving Incertainty," Discussion Papers 499, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    10. Sudhakar D. Deshmukh & Stanley R. Pliskaf, 1983. "A Martingale Characterization of the Price of a Nonrenewable Resource with Decisions Involving Uncertainty," Discussion Papers 565, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    11. Otto, Vincent M. & Löschel, Andreas, 2008. "Technological Uncertainty and Cost-effectiveness of CO2 Emission Trading Schemes," ZEW Discussion Papers 08-050, ZEW - Leibniz Centre for European Economic Research.
    12. LAFFORGUE Gilles, 2006. "On the Effects of Stochastic Technical Change on Optimal Sustainable Growth Paths with Exhaustible Resource," LERNA Working Papers 06.02.195, LERNA, University of Toulouse.
    13. Secchi, Silvia, 2000. "Economic issues in resistance management," ISU General Staff Papers 2000010108000013359, Iowa State University, Department of Economics.
    14. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    15. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    16. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    17. Genius, Margarita & Koundouri, Phoebe & Nauges, Celine & Tzouvelekas, Vangelis, 2013. "Information Spillovers in Irrigation Technology Diffusion: Social Learning, Extension Visits and Spatial Effects," MPRA Paper 122342, University Library of Munich, Germany.
    18. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    19. Taylor, Rebecca & Zilberman, David, 2015. "The Diffusion of Process Innovation: The Case of Drip Irrigation in California," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205320, Agricultural and Applied Economics Association.
    20. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:5:y:1995:i:1:p:29-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.