IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v21y2002i5p355-80.html
   My bibliography  Save this article

Can Cointegration-Based Forecasting Outperform Univariate Models? An Application to Asian Exchange Rates

Author

Listed:
  • McCrae, Michael, et al

Abstract

Conventional wisdom holds that restrictions on low-frequency dynamics among cointegrated variables should provide more accurate short- to medium-term forecasts than univariate techniques that contain no such information; even though, on standard accuracy measures, the information may not improve long-term forecasting. But inconclusive empirical evidence is complicated by confusion about an appropriate accuracy criterion and the role of integration and cointegration in forecasting accuracy. We evaluate the short- and medium-term forecasting accuracy of univariate Box-Jenkins type ARIMA techniques that imply only integration against multivariate cointegration models that contain both integration and cointegration for a system of five cointegrated Asian exchange rate time series. We use a rolling-window technique to make multiple out of sample forecasts from one to forty steps ahead. Relative forecasting accuracy for individual exchange rates appears to be sensitive to the behaviour of the exchange rate series and the forecast horizon length. Over short horizons, ARIMA model forecasts are more accurate for series with moving-average terms of order > 1. ECMs perform better over medium-term time horizons for series with no moving average terms. The results suggest a need to distinguish between "sequential" and "synchronous" forecasting ability in such comparisons. Copyright © 2002 by John Wiley & Sons, Ltd.

Suggested Citation

  • McCrae, Michael, et al, 2002. "Can Cointegration-Based Forecasting Outperform Univariate Models? An Application to Asian Exchange Rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 355-380, August.
  • Handle: RePEc:jof:jforec:v:21:y:2002:i:5:p:355-80
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. repec:cdl:econwp:qt791143kp is not listed on IDEAS
    2. G. E. P. Box & G. C. Tiao, 1976. "Comparison of Forecast and Actuality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 195-200, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barakchian , Seyed Mahdi, 2012. "Implications of Cointegration for Forecasting: A Review and an Empirical Analysis," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 7(1), pages 87-118, October.
    2. Rakesh K. Bissoondeeal & Michail Karoglou & Alicia M. Gazely, 2011. "Forecasting The Uk/Us Exchange Rate With Divisia Monetary Models And Neural Networks," Scottish Journal of Political Economy, Scottish Economic Society, vol. 58(1), pages 127-152, February.
    3. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    4. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    5. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    6. Utkarsh Kumar & Wasim Ahmad & Gazi Salah Uddin, 2024. "Bayesian Markov switching model for BRICS currencies' exchange rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2322-2340, September.
    7. Mick Silver, 2006. "Core Inflation Measures and Statistical Issues in Choosing Among Them," IMF Working Papers 2006/097, International Monetary Fund.
    8. Wei Yunjie & Sun Shaolong & Lai Kin Keung & Abbas Ghulam, 2018. "A KELM-Based Ensemble Learning Approach for Exchange Rate Forecasting," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 289-301, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Guerrero & Edmundo Berumen, 1998. "Forecasting electricity consumption with extra-model information provided by consumers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 283-299.
    2. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2021. "Causal effect of regulated Bitcoin futures on volatility and volume," Papers 2109.15052, arXiv.org.
    3. Gonzalez, Pilar & Moral, Paz, 1995. "An analysis of the international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 11(2), pages 233-251, June.
    4. Ali Akarca & Dimitri Andrianacos, 1998. "The relationship between crude oil and gasoline prices," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 4(3), pages 282-288, August.
    5. Ali T. Akarca, 2014. "How Should We Interpret the Outcome of the June 2015 Parliamentary Election in Turkey?," Ekonomi-tek - International Economics Journal, Turkish Economic Association, vol. 3(3), pages 1-22, September.
    6. Holt, Matthew T. & Brandt, Jon A., 1985. "Forecasting Hog Prices Using Time Series Analysis Of Residuals," 1985 Annual Meeting, August 4-7, Ames, Iowa 278558, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Alvarez, Luis J. & Delrieu, Juan C. & Jareño, Javier, 1997. "Restricted forecasts and economic target monitoring: An application to the Spanish Consumer Price Index," Journal of Policy Modeling, Elsevier, vol. 19(3), pages 333-349, June.
    8. Wang, Shin-Huei & Vasilakis, Chrysovalantis, 2013. "Recursive predictive tests for structural change of long-memory ARFIMA processes with unknown break points," Economics Letters, Elsevier, vol. 118(2), pages 389-392.
    9. Kraay, Aart & Monokroussos, George, 1999. "Growth forecasts using time series and growth models," Policy Research Working Paper Series 2224, The World Bank.
    10. Victor Guerrero, 2005. "Restricted estimation of an adjusted time series: application to Mexico's industrial production index," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(2), pages 157-177.
    11. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    12. Ali Akarca & Dimitri Andrianacos, 1997. "Detecting break in oil price series using the Box-Tiao method," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 3(2), pages 217-224, May.
    13. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2021. "Estimating the causal effect of an intervention in a time series setting: the C-ARIMA approach," Papers 2103.06740, arXiv.org, revised Sep 2021.
    14. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:21:y:2002:i:5:p:355-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.