IDEAS home Printed from https://ideas.repec.org/a/inm/ororsc/v27y2016i1p72-89.html
   My bibliography  Save this article

Learning by Hiring: The Effects of Scientists’ Inbound Mobility on Research Performance in Academia

Author

Listed:
  • Kremena Slavova

    () (Department of International Management and Innovation, Middlesex University Business School, London NW4 4BT, United Kingdom)

  • Andrea Fosfuri

    () (Department of Management and Technology and CRIOS, Bocconi University, 20136 Milan, Italy)

  • Julio O. De Castro

    () (Department of Entrepreneurship, IE Business School, 28006 Madrid, Spain)

Abstract

This study investigates the effects of scientists’ inbound mobility on the research performance of incumbent scientists in an academic setting. The theoretical framework integrates insights from learning theory and social comparison theory to suggest two main mechanisms behind these effects: localized learning and social comparison. The authors propose several hypotheses about the conditions that might intensify or weaken such effects. Specifically, the arrival of new scientific personnel is likely to exert stronger positive effects on the performance of incumbent scientists with shorter (cf. longer) organizational tenure; in addition, academic departments with less diversified expertise and with higher levels of internal collaborations likely reap greater benefits from learning by hiring. The empirical findings, based on a longitudinal analysis of a sample of 94 U.S. academic chemical engineering departments, provide empirical support for these contentions.

Suggested Citation

  • Kremena Slavova & Andrea Fosfuri & Julio O. De Castro, 2016. "Learning by Hiring: The Effects of Scientists’ Inbound Mobility on Research Performance in Academia," Organization Science, INFORMS, vol. 27(1), pages 72-89, February.
  • Handle: RePEc:inm:ororsc:v:27:y:2016:i:1:p:72-89
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/orsc.2015.1026
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    2. Lynne G. Zucker & Michael R. Darby & Jeff S. Armstrong, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    3. Neus Palomeras & Eduardo Melero, 2010. "Markets for Inventors: Learning-by-Hiring as a Driver of Mobility," Management Science, INFORMS, vol. 56(5), pages 881-895, May.
    4. Kenney, Martin & Richard Goe, W., 2004. "The role of social embeddedness in professorial entrepreneurship: a comparison of electrical engineering and computer science at UC Berkeley and Stanford," Research Policy, Elsevier, vol. 33(5), pages 691-707, July.
    5. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
    6. Zucker, Lynne G. & Darby, Michael R., 1997. "Present at the biotechnological revolution: transformation of technological identity for a large incumbent pharmaceutical firm," Research Policy, Elsevier, vol. 26(4-5), pages 429-446, December.
    7. Charles F. Manski, 2000. "Economic Analysis of Social Interactions," Journal of Economic Perspectives, American Economic Association, vol. 14(3), pages 115-136, Summer.
    8. Argote, Linda & Ingram, Paul, 2000. "Knowledge Transfer: A Basis for Competitive Advantage in Firms," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 150-169, May.
    9. James D. Adams & J. Roger Clemmons, 2011. "The role of search in university productivity: inside, outside, and interdisciplinary dimensions," Industrial and Corporate Change, Oxford University Press, vol. 20(1), pages 215-251, February.
    10. Adam M. Kleinbaum & Toby E. Stuart & Michael L. Tushman, 2013. "Discretion Within Constraint: Homophily and Structure in a Formal Organization," Organization Science, INFORMS, vol. 24(5), pages 1316-1336, October.
    11. Carayol, Nicolas & Matt, Mireille, 2004. "Does research organization influence academic production?: Laboratory level evidence from a large European university," Research Policy, Elsevier, vol. 33(8), pages 1081-1102, October.
    12. Pierre Azoulay & Joshua S. Graff Zivin & Jialan Wang, 2010. "Superstar Extinction," The Quarterly Journal of Economics, Oxford University Press, vol. 125(2), pages 549-589.
    13. Deborah Gladstein Ancona & David F. Caldwell, 1992. "Demography and Design: Predictors of New Product Team Performance," Organization Science, INFORMS, vol. 3(3), pages 321-341, August.
    14. Dundar, Halil & Lewis, Darrell R., 1995. "Departmental productivity in American universities: Economies of scale and scope," Economics of Education Review, Elsevier, vol. 14(2), pages 119-144, June.
    15. Haeussler, Carolin, 2011. "Information-sharing in academia and the industry: A comparative study," Research Policy, Elsevier, vol. 40(1), pages 105-122, February.
    16. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    17. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    18. Tzabbar, Daniel & Aharonson, Barak S. & Amburgey, Terry L., 2013. "When does tapping external sources of knowledge result in knowledge integration?," Research Policy, Elsevier, vol. 42(2), pages 481-494.
    19. Paul Almeida & Bruce Kogut, 1999. "Localization of Knowledge and the Mobility of Engineers in Regional Networks," Management Science, INFORMS, vol. 45(7), pages 905-917, July.
    20. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    21. Boris Groysberg & Linda-Eling Lee, 2009. "Hiring Stars and Their Colleagues: Exploration and Exploitation in Professional Service Firms," Organization Science, INFORMS, vol. 20(4), pages 740-758, August.
    22. Alexander Oettl, 2012. "Reconceptualizing Stars: Scientist Helpfulness and Peer Performance," Management Science, INFORMS, vol. 58(6), pages 1122-1140, June.
    23. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
    24. Aschhoff, Birgit & Grimpe, Christoph, 2014. "Contemporaneous peer effects, career age and the industry involvement of academics in biotechnology," Research Policy, Elsevier, vol. 43(2), pages 367-381.
    25. Robert S. Huckman & Gary P. Pisano, 2006. "The Firm Specificity of Individual Performance: Evidence from Cardiac Surgery," Management Science, INFORMS, vol. 52(4), pages 473-488, April.
    26. Rebecca R. Kehoe & Daniel Tzabbar, 2015. "Lighting the way or stealing the shine? An examination of the duality in star scientists' effects on firm innovative performance," Strategic Management Journal, Wiley Blackwell, vol. 36(5), pages 709-727, May.
    27. Janet Bercovitz & Maryann Feldman, 2008. "Academic Entrepreneurs: Organizational Change at the Individual Level," Organization Science, INFORMS, vol. 19(1), pages 69-89, February.
    28. Jaeyong Song & Paul Almeida & Geraldine Wu, 2003. "Learning--by--Hiring: When Is Mobility More Likely to Facilitate Interfirm Knowledge Transfer?," Management Science, INFORMS, vol. 49(4), pages 351-365, April.
    29. Ray Reagans, 2011. "Close Encounters: Analyzing How Social Similarity and Propinquity Contribute to Strong Network Connections," Organization Science, INFORMS, vol. 22(4), pages 835-849, August.
    30. Kilduff, Martin, 1990. "The interpersonal structure of decision making: A social comparison approach to organizational choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 47(2), pages 270-288, December.
    31. Lionel Nesta & Pier Paolo Saviotti, 2005. "COHERENCE OF THE KNOWLEDGE BASE AND THE FIRM'S INNOVATIVE PERFORMANCE: EVIDENCE FROM THE U.S. PHARMACEUTICAL INDUSTRY -super-," Journal of Industrial Economics, Wiley Blackwell, vol. 53(1), pages 123-142, March.
    32. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    33. Donald E. Gibson & Barbara S. Lawrence, 2010. "Women's and Men's Career Referents: How Gender Composition and Comparison Level Shape Career Expectations," Organization Science, INFORMS, vol. 21(6), pages 1159-1175, December.
    34. Gina Dokko & Lori Rosenkopf, 2010. "Social Capital for Hire? Mobility of Technical Professionals and Firm Influence in Wireless Standards Committees," Organization Science, INFORMS, vol. 21(3), pages 677-695, June.
    35. Srikanth Paruchuri & Atul Nerkar & Donald C. Hambrick, 2006. "Acquisition Integration and Productivity Losses in the Technical Core: Disruption of Inventors in Acquired Companies," Organization Science, INFORMS, vol. 17(5), pages 545-562, October.
    36. Gina Dokko & Steffanie L. Wilk & Nancy P. Rothbard, 2009. "Unpacking Prior Experience: How Career History Affects Job Performance," Organization Science, INFORMS, vol. 20(1), pages 51-68, February.
    37. Deeds, David L. & Decarolis, DONA & Coombs, Joseph, 2000. "Dynamic capabilities and new product development in high technology ventures: An empirical analysis of new biotechnology firms," Journal of Business Venturing, Elsevier, vol. 15(3), pages 211-229, May.
    38. Sai Yayavaram & Wei-Ru Chen, 2015. "Changes in firm knowledge couplings and firm innovation performance: The moderating role of technological complexity," Strategic Management Journal, Wiley Blackwell, vol. 36(3), pages 377-396, March.
    39. Almeida, Paul & Dokko, Gina & Rosenkopf, Lori, 2003. "Startup size and the mechanisms of external learning: increasing opportunity and decreasing ability?," Research Policy, Elsevier, vol. 32(2), pages 301-315, February.
    40. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ororsc:v:27:y:2016:i:1:p:72-89. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.