IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v26y2007i2p196-217.html
   My bibliography  Save this article

Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis

Author

Listed:
  • Nitin Mehta

    (Rotman School of Management, University of Toronto, 105 St. George Street, Toronto, Ontario M5S 3E6, Canada)

Abstract

We propose a framework to investigate consumers' brand choice and purchase incidence decisions across multiple categories, where both decisions are modeled as an outcome of a consumer's basket utility maximization. We build the model from first principles by theoretically explicating a general model of basket utility maximization and then examining the reasonable restrictions that can be placed to make the solution tractable without sacrificing its flexibility. Comparing with prior models, we show why prior multicategory purchase incidence models overemphasize the role of the cross effects of a market mix of brands in other categories on the purchase incidence decision of a given category. Additionally, we show that prior single-category models are a special case of the proposed model when further restrictions are placed on the basket utility structure. We estimate the model on household basket data for the laundry family of categories. We show (i) why prior single-category and multicategory models would systematically bias the estimates of the own- and cross-price/promotional purchase incidence elasticities; and (ii) how the market mix of each brand in each category affects the purchases across all categories, which can help retailers make promotional decisions across a portfolio of products.

Suggested Citation

  • Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
  • Handle: RePEc:inm:ormksc:v:26:y:2007:i:2:p:196-217
    DOI: 10.1287/mksc.1060.0214
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1060.0214
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1060.0214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    3. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
    4. P. Seetharaman & Siddhartha Chib & Andrew Ainslie & Peter Boatwright & Tat Chan & Sachin Gupta & Nitin Mehta & Vithala Rao & Andrei Strijnev, 2005. "Models of Multi-Category Choice Behavior," Marketing Letters, Springer, vol. 16(3), pages 239-254, December.
    5. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    6. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    7. P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
    8. Randolph E. Bucklin & James M. Lattin, 1991. "A Two-State Model of Purchase Incidence and Brand Choice," Marketing Science, INFORMS, vol. 10(1), pages 24-39.
    9. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    10. Harikesh Nair & Jean-Pierre Dubé & Pradeep Chintagunta, 2005. "Accounting for Primary and Secondary Demand Effects with Aggregate Data," Marketing Science, INFORMS, vol. 24(3), pages 444-460, November.
    11. Raghuram Iyengar & Asim Ansari & Sunil Gupta, 2003. "Leveraging Information Across Categories," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 425-465, December.
    12. Andrew Ainslie & Peter E. Rossi, 1998. "Similarities in Choice Behavior Across Product Categories," Marketing Science, INFORMS, vol. 17(2), pages 91-106.
    13. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    14. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    15. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1975. "Transcendental Logarithmic Utility Functions," American Economic Review, American Economic Association, vol. 65(3), pages 367-383, June.
    16. Sharad Borle & Peter Boatwright & Joseph B. Kadane & Joseph C. Nunes & Shmueli Galit, 2005. "The Effect of Product Assortment Changes on Customer Retention," Marketing Science, INFORMS, vol. 24(4), pages 616-622, July.
    17. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    18. David R. Bell & James M. Lattin, 1998. "Shopping Behavior and Consumer Preference for Store Price Format: Why “Large Basket” Shoppers Prefer EDLP," Marketing Science, INFORMS, vol. 17(1), pages 66-88.
    19. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
    20. Deaton, Angus, 1974. "A Reconsideration of the Empirical Implications of Additive Preferences," Economic Journal, Royal Economic Society, vol. 84(334), pages 338-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg M. Allenby & Thomas S. Shively & Sha Yang & Mark J. Garratt, 2004. "A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts," Marketing Science, INFORMS, vol. 23(1), pages 95-108, June.
    2. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    3. Zhang, Qin & Gangwar, Manish & Seetharaman, P.B., 2017. "Polygamous Store Loyalties: An Empirical Investigation," Journal of Retailing, Elsevier, vol. 93(4), pages 477-492.
    4. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    5. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    6. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    7. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    8. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    9. Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
    10. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    11. Gázquez-Abad, Juan Carlos & Martínez-López, Francisco J., 2016. "Understanding the impact of store flyers on purchase behaviour: An empirical analysis in the context of Spanish households," Journal of Retailing and Consumer Services, Elsevier, vol. 28(C), pages 263-273.
    12. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    13. Rakesh Niraj & V. Padmanabhan & P. B. Seetharaman, 2008. "Research Note—A Cross-Category Model of Households' Incidence and Quantity Decisions," Marketing Science, INFORMS, vol. 27(2), pages 225-235, 03-04.
    14. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    15. Vidya Mani & Douglas J. Thomas & Saurabh Bansal, 2022. "Estimating Substitution and Basket Effects in Retail Stores: Implications for Assortment Planning," Management Science, INFORMS, vol. 68(7), pages 5002-5024, July.
    16. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    17. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
    18. Nitin Mehta & Xinlei (Jack) Chen & Om Narasimhan, 2010. "Examining Demand Elasticities in Hanemann's Framework: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 29(3), pages 422-437, 05-06.
    19. Zhang, Qin & Seetharaman, P.B. & Narasimhan, Chakravarthi, 2012. "The Indirect Impact of Price Deals on Households’ Purchase Decisions Through the Formation of Expected Future Prices," Journal of Retailing, Elsevier, vol. 88(1), pages 88-101.
    20. Andrews, Rick L. & Currim, Imran S., 2009. "Multi-stage purchase decision models: Accommodating response heterogeneity, common demand shocks, and endogeneity using disaggregate data," International Journal of Research in Marketing, Elsevier, vol. 26(3), pages 197-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:26:y:2007:i:2:p:196-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.