IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Success in High-Technology Markets: Is Marketing Capability Critical?

  • Shantanu Dutta

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Om Narasimhan

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Surendra Rajiv

    (Graduate School of Business, University of Chicago, Chicago, Illinois 60637)

Registered author(s):

    We propose a conceptual framework—with the resource-based view (RBV) of the firm as its theoretical underpinning—to explain interfirm differences in firms' profitability in high-technology markets in terms of differences in their functional capabilities. Specifically, we suggest that marketing, R&D, and operations capabilities, along with interactions among these capabilities, are important determinants of relative financial performance within the industry. This paper contributes to the RBV literature by proposing the input-output perspective to conceptualize the notion of capabilities. Specifically, this approach entails modeling a firm's functional activities—viz., marketing, R&D and operations—as transformation functions that relate the productive factors/resources to its functional objectives, if the firm were to deploy these resources most efficiently. Any underattainment of the functional objective, then, is attributable to functional inefficiency, or equivalently, to a lower functional capability of the firm. The input-output conceptualization of a firm's capabilities is then estimated using the stochastic frontier estimation (SFE) methodology. SFE provides the appropriate econometric technique to empirically estimate the efficient frontier and hence the level of efficiency achieved by the various firms. Our study contributes to a number of literatures, both methodologically and substantively. First, it contributes both conceptually and methodologically to the RBV literature. Conceptually, our study suggests that firm capabilities can be viewed in an input–output framework. Methodologically, the study suggests the use of stochastic frontier estimation to operationalize and estimate firm capabilities. This methodology is, to the best of our knowledge, the first to allow the researcher/manager to capabilities from archival data. Substantively, our study contributes to the literature on market orientation by suggesting that a stronger market orientation of a firm should be reflected in a higher marketing capability. It also adds to the literature on “design for manufacturability” by explicating the complementarity among the various functional capabilities and offering empirical evidence on their relative importance in influencing a firm's performance. Finally, our study builds on prior literature that has highlighted the importance of marketing–R&D coordination as important determinants of new product development and success. We highlight below some of our main findings. • A strong base of innovative technologies enhances a firm's sales by favorably influencing consumers' expectations about the externality benefits associated with its product. This suggests that a past track record of consistent innovation is a credible signal to current and potential customers of the firm's continued excellence in a technologically evolving market. Given the importance of influencing customers, managers need to tailor their marketing activities around the need to inform customers of the technological excellence of their firm. Thus, customers need to be informed of the innovative technologies that the firm possesses and of the future R&D initiatives undertaken by it. Similarly, any potential applications of innovative technology developed by the firm, and of technologies under development, should be emphasized. • Marketing capability has its greatest impact on the (quality-adjusted) innovative output for firms that have a strong technological base. In other words, firms with a strong R&D base are the ones with the most to gain from a strong marketing capability. • Marketing capability strongly influences the width of applicability of innovations, i.e., a firm's marketing capability enhances its ability to generate innovative technologies that have applications across a range of industries. This result carries a strong message for managers: A strong market orientation is one of the most fertile sources of ideas for innovation. Thus, marketing needs to be involved from the beginning of the innovation process—namely, right at the stage when technological ideas are being generated. • The most important determinant of a firm's performance is the interaction of marketing and R&D capabilities. This supports the assertion that firms in high-technology markets need to excel at two things: the ability to come up with innovations constantly, and the ability to commercialize these innovations into the kinds of products that capture consumer needs and preferences. This finding offers further evidence on the importance of coordination between R&D and marketing, as suggested in the extant marketing literature. Finally, using archival data, our methodology can be used to benchmark a firm's capabilities, with other firms in the industry, along various functional dimensions. This would be an important step in making more informed resource-allocation decisions. Thus, the firm can spend more money on those capabilities where it most lags the competition, or on those capabilities that are shown to have the maximum impact on firm performance.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.18.4.547
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 18 (1999)
    Issue (Month): 4 ()
    Pages: 547-568

    as
    in new window

    Handle: RePEc:inm:ormksc:v:18:y:1999:i:4:p:547-568
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
    2. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    3. S.A. Lippman & R.P. Rumelt, 1982. "Uncertain Imitability: An Analysis of Interfirm Differences in Efficiency under Competition," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 418-438, Autumn.
    4. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    5. Zvi Griliches, 1984. "Introduction to "R & D, Patents, and Productivity"," NBER Chapters, in: R&D, Patents, and Productivity, pages 1-20 National Bureau of Economic Research, Inc.
    6. Kumbhakar, Subal C., 1987. "The specification of technical and allocative inefficiency in stochastic production and profit frontiers," Journal of Econometrics, Elsevier, vol. 34(3), pages 335-348, March.
    7. Baltagi, Badi H & Griffin, James M, 1988. "A Generalized Error Component Model with Heteroscedastic Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(4), pages 745-53, November.
    8. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1992. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," NBER Working Papers 3993, National Bureau of Economic Research, Inc.
    9. Martin S. Eichenbaum & Lars Peter Hansen & Kenneth J. Singleton, 1988. "A Time Series Analysis of Representative Agent Models of Consumption and Leisure Choice Under Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 103(1), pages 51-78.
    10. Hoffman, D. & Pagan, A., 1988. "Post-Sample Prediction Tests For Generalized Method Of Moment Estimators," RCER Working Papers 129, University of Rochester - Center for Economic Research (RCER).
    11. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1, September.
    12. Subal Kumbhakar, 1997. "Efficiency estimation with heteroscedasticity in a panel data model," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 379-386.
    13. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    14. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    15. William Boulding & Richard Staelin, 1995. "Identifying Generalizable Effects of Strategic Actions on Firm Performance: The Case of Demand-Side Returns to R&D Spending," Marketing Science, INFORMS, vol. 14(3_supplem), pages G222-G236.
    16. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    17. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1989. "Production Frontiers With Cross-Sectinal And Time-Series Variation In Efficiency Levels," Working Papers 89-18, C.V. Starr Center for Applied Economics, New York University.
    18. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    19. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
    20. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    21. Ferrier, Gary D. & Lovell, C. A. Knox, 1990. "Measuring cost efficiency in banking : Econometric and linear programming evidence," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 229-245.
    22. Irwin, Douglas A & Klenow, Peter J, 1994. "Learning-by-Doing Spillovers in the Semiconductor Industry," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1200-1227, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:18:y:1999:i:4:p:547-568. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.