IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2753638.html
   My bibliography  Save this article

A Network-Based Approach to Modeling and Predicting Product Coconsideration Relations

Author

Listed:
  • Zhenghui Sha
  • Yun Huang
  • Jiawei Sophia Fu
  • Mingxian Wang
  • Yan Fu
  • Noshir Contractor
  • Wei Chen

Abstract

Understanding customer preferences in consideration decisions is critical to choice modeling in engineering design. While existing literature has shown that the exogenous effects (e.g., product and customer attributes) are deciding factors in customers’ consideration decisions, it is not clear how the endogenous effects (e.g., the intercompetition among products) would influence such decisions. This paper presents a network-based approach based on Exponential Random Graph Models to study customers’ consideration behaviors according to engineering design. Our proposed approach is capable of modeling the endogenous effects among products through various network structures (e.g., stars and triangles) besides the exogenous effects and predicting whether two products would be conisdered together. To assess the proposed model, we compare it against the dyadic network model that only considers exogenous effects. Using buyer survey data from the China automarket in 2013 and 2014, we evaluate the goodness of fit and the predictive power of the two models. The results show that our model has a better fit and predictive accuracy than the dyadic network model. This underscores the importance of the endogenous effects on customers’ consideration decisions. The insights gained from this research help explain how endogenous effects interact with exogeous effects in affecting customers’ decision-making.

Suggested Citation

  • Zhenghui Sha & Yun Huang & Jiawei Sophia Fu & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2018. "A Network-Based Approach to Modeling and Predicting Product Coconsideration Relations," Complexity, Hindawi, vol. 2018, pages 1-14, January.
  • Handle: RePEc:hin:complx:2753638
    DOI: 10.1155/2018/2753638
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2753638.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2753638.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2753638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nedungadi, Prakash, 1990. "Recall and Consumer Consideration Sets: Influencing Choice without Altering Brand Evaluations," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(3), pages 263-276, December.
    2. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    3. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    4. Chiang, Jeongwen & Chib, Siddhartha & Narasimhan, Chakravarthi, 1998. "Markov chain Monte Carlo and models of consideration set and parameter heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 223-248, November.
    5. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    6. Timothy J. Gilbride & Greg M. Allenby, 2006. "Estimating Heterogeneous EBA and Economic Screening Rule Choice Models," Marketing Science, INFORMS, vol. 25(5), pages 494-509, September.
    7. Kfir Eliaz & Ran Spiegler, 2011. "Consideration Sets and Competitive Marketing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 235-262.
    8. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    9. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    10. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    11. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 393-408, March.
    12. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youyi Bi & Yunjian Qiu & Zhenghui Sha & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2021. "Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis," Networks and Spatial Economics, Springer, vol. 21(2), pages 365-385, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    2. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    3. Lu, Zhentong, 2022. "Estimating multinomial choice models with unobserved choice sets," Journal of Econometrics, Elsevier, vol. 226(2), pages 368-398.
    4. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    5. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    6. Bremer, Lucas & Heitmann, Mark & Schreiner, Thomas F., 2017. "When and how to infer heuristic consideration set rules of consumers," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 516-535.
    7. Helmers, Christian & Krishnan, Pramila & Patnam, Manasa, 2019. "Attention and saliency on the internet: Evidence from an online recommendation system," Journal of Economic Behavior & Organization, Elsevier, vol. 161(C), pages 216-242.
    8. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    9. Yusufcan Masatlioglu & Daisuke Nakajima & Erkut Y. Ozbay, 2012. "Revealed Attention," American Economic Review, American Economic Association, vol. 102(5), pages 2183-2205, August.
    10. Bleile, Jörg, 2016. "Limited Attention in Case-Based Belief Formation," Center for Mathematical Economics Working Papers 518, Center for Mathematical Economics, Bielefeld University.
    11. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    12. Joseph Pancras, 2010. "A Framework to Determine the Value of Consumer Consideration Set Information for Firm Pricing Strategies," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 269-300, March.
    13. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    14. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    15. Yao, Alex, 2023. "Uncovering heterogeneous prestige effect in luxury consumption: Insights from the Chinese luxury market," Journal of Business Research, Elsevier, vol. 168(C).
    16. Crawford, Gregory S. & Griffith, Rachel & Iaria, Alessandro, 2021. "A survey of preference estimation with unobserved choice set heterogeneity," Journal of Econometrics, Elsevier, vol. 222(1), pages 4-43.
    17. Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
    18. Jourdain, Damien & Lairez, Juliette & Striffler, Bruno & Lundhede, Thomas, 2022. "A choice experiment approach to evaluate maize farmers’ decision-making processes in Lao PDR," Journal of choice modelling, Elsevier, vol. 44(C).
    19. Neeraj Arora & Ty Henderson & Qing Liu, 2011. "Noncompensatory Dyadic Choices," Marketing Science, INFORMS, vol. 30(6), pages 1028-1047, November.
    20. Griffith, Rachel & Crawford, Gregory & Iaria, Alessandro, 2016. "Preference Estimation with Unobserved Choice Set Heterogeneity using Sufficient Sets," CEPR Discussion Papers 11675, C.E.P.R. Discussion Papers.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2753638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.