IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p1969-d116817.html
   My bibliography  Save this article

Assessing the Impact of Renewable Energy on Regional Sustainability—A Comparative Study of Sogn og Fjordane (Norway) and Okinawa (Japan)

Author

Listed:
  • Valeria Jana Schwanitz

    (Department of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Campus Sogndal 6851, Norway)

  • August Wierling

    (Department of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Campus Sogndal 6851, Norway)

  • Payal Shah

    (Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, Okinawa Prefecture 904-0495, Japan)

Abstract

The drive to expand renewable energies is often in direct conflict with sustainable development goals. Thus, it is important that energy policies account for potential trade-offs. We assess the interlinkages between energy, food, water and land, for two case studies, Okinawa and Sogn og Fjordane. We apply a range of assessment methods and study their usefulness as tools to identify trade-offs and to compare the sustainability performance. We calculate cross-sectoral footprints, self-sufficiency ratios and perform a simplified Energy-Water-Food nexus analysis. We use the latter for assessing scenarios to increase energy and food self-sufficiency in Okinawa, while we use ecosystem service (ESS) accounting for Sogn og Fjordane. For Okinawa, we find that constraints on the energy, food and water sectors urgently call for integrated approaches to energy policy; for Sogn og Fjordane, the further expansion of renewables comes at the expense of cultural and supporting ESS, which could outweigh gains from increased energy exports. We recommend a general upgrade to indicators and visualization methods that look beyond averages and a fostering of infrastructure for data on sustainable development based on harmonized international protocols. We warn against rankings of countries or regions based on benchmarks that are neither theory-driven nor location-specific.

Suggested Citation

  • Valeria Jana Schwanitz & August Wierling & Payal Shah, 2017. "Assessing the Impact of Renewable Energy on Regional Sustainability—A Comparative Study of Sogn og Fjordane (Norway) and Okinawa (Japan)," Sustainability, MDPI, vol. 9(11), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1969-:d:116817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/1969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/1969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Behrens & Michelle T. H. van Vliet & Tijmen Nanninga & Brid Walsh & João F. D. Rodrigues, 2017. "Climate change and the vulnerability of electricity generation to water stress in the European Union," Nature Energy, Nature, vol. 2(8), pages 1-7, August.
    2. Schwanitz, Valeria Jana & Longden, Thomas & Knopf, Brigitte & Capros, Pantelis, 2015. "The implications of initiating immediate climate change mitigation — A potential for co-benefits?," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 166-177.
    3. Hastik, Richard & Basso, Stefano & Geitner, Clemens & Haida, Christin & Poljanec, Aleš & Portaccio, Alessia & Vrščaj, Borut & Walzer, Chris, 2015. "Renewable energies and ecosystem service impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 608-623.
    4. Kurian, Mathew, 2017. "The water-energy-food nexus," Environmental Science & Policy, Elsevier, vol. 68(C), pages 97-106.
    5. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    6. Sergiy Smetana & Christine Tamásy & Alexander Mathys & Volker Heinz, 2015. "Sustainability and regions: sustainability assessment in regional perspective," Regional Science Policy & Practice, Wiley Blackwell, vol. 7(4), pages 163-186, November.
    7. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    8. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    9. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    10. Clapp, Jennifer, 2017. "Food self-sufficiency: Making sense of it, and when it makes sense," Food Policy, Elsevier, vol. 66(C), pages 88-96.
    11. Wichelns, Dennis, 2017. "The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 113-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inger Auestad & Yngve Nilsen & Knut Rydgren, 2018. "Environmental Restoration in Hydropower Development—Lessons from Norway," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    2. Juan E. Núñez-Ríos & Norman Aguilar-Gallegos & Jacqueline Y. Sánchez-García & Pedro Pablo Cardoso-Castro, 2020. "Systemic Design for Food Self-Sufficiency in Urban Areas," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    3. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    4. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    5. Yamaguchi, Rintaro & Managi, Shunsuke, 2019. "Backward- and Forward-looking Shadow Prices in Inclusive Wealth Accounting: An Example of Renewable Energy Capital," Ecological Economics, Elsevier, vol. 156(C), pages 337-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    2. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    3. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    6. Simpson, Gareth & Jewitt, Graham & Becker, William & Badenhorst, Jessica & Neves, Ana & Rovira, Pere & Pascual, Victor, 2020. "The Water-Energy-Food Nexus Index: A Tool for Integrated Resource Management and Sustainable Development," OSF Preprints tdhw5, Center for Open Science.
    7. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    8. Märker, Carolin & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "Integrated governance for the food–energy–water nexus – The scope of action for institutional change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 290-300.
    9. Najam uz Zehra Gardezi & Brent S. Steel & Angela Lavado, 2020. "The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    10. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    11. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    12. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    13. Olga Laiza Kupika & Edson Gandiwa & Godwell Nhamo, 2019. "Green economy initiatives in the face of climate change: experiences from the Middle Zambezi Biosphere Reserve, Zimbabwe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2507-2533, October.
    14. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    16. Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    17. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    18. Sabrina Kirschke & Lulu Zhang & Kristin Meyer, 2018. "Decoding the Wickedness of Resource Nexus Problems—Examples from Water-Soil Nexus Problems in China," Resources, MDPI, vol. 7(4), pages 1-15, October.
    19. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Víctor Correa-Porcel & Laura Piedra-Muñoz & Emilio Galdeano-Gómez, 2021. "Water–Energy–Food Nexus in the Agri-Food Sector: Research Trends and Innovating Practices," IJERPH, MDPI, vol. 18(24), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1969-:d:116817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.