IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p4014-d1645773.html
   My bibliography  Save this article

Estimation of Lithium-Ion Battery State of Health-Based Multi-Feature Analysis and Convolutional Neural Network–Long Short-Term Memory

Author

Listed:
  • Xin Ma

    (School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Xingke Ding

    (School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Chongyi Tian

    (School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Changbin Tian

    (School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Rui Zhu

    (School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China)

Abstract

Accurate estimation of battery state of health (SOH) is critical to the efficient operation of energy storage battery systems. Furthermore, precise SOH estimation methods can significantly reduce resource waste by extending the battery service life and optimizing retirement strategies, which is compatible with the sustainable development of energy systems under carbon neutrality goals. Conventional methods struggle to comprehensively characterize the health degradation properties of batteries. To address that limitation, this study proposes a data-driven model based on multi-feature analysis using a hybrid convolutional neural network and long short-term memory (CNN-LSTM) architecture, which synergistically extracts multi-dimensional degradation features to enhance SOH estimation accuracy. The framework begins by systematically collecting the voltage, current, and other parameters during charge–discharge cycles to construct a temporally resolved multi-dimensional feature matrix. A correlation analysis employing Pearson correlation coefficients subsequently identifies key health indicators strongly correlated with SOH degradation. At the same time, the K-means clustering method was adopted to identify and process the outliers of CALCE data, which ensures the high quality of data and the stability of the model. Then, CNN-LSTM hybrid neural network architecture was constructed. The experimental results demonstrated that the absolute value of MBE for the dataset provided by CALCE was less than 0.2%. The MAE was less than 0.3%, and the RMSE was less than 0.4%. Furthermore, the proposed method demonstrated a strong performance on the dataset provided by NASA PCoE. The experimental results indicated that the proposed method significantly reduced the estimation error of SOH across the entire battery lifecycle, and they fully verified the superiority and engineering applicability of the algorithm in battery SOH estimation.

Suggested Citation

  • Xin Ma & Xingke Ding & Chongyi Tian & Changbin Tian & Rui Zhu, 2025. "Estimation of Lithium-Ion Battery State of Health-Based Multi-Feature Analysis and Convolutional Neural Network–Long Short-Term Memory," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4014-:d:1645773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/4014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/4014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
    2. Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Yuanyuan Zhang, 2022. "Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    3. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    4. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    5. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    6. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    7. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    8. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    9. Ren, Yi & Tang, Ting & Jiang, Fusheng & Xia, Quan & Zhu, Xiayu & Sun, Bo & Yang, Dezhen & Feng, Qiang & Qian, Cheng, 2025. "A novel state of health estimation method for lithium-ion battery pack based on cross generative adversarial networks," Applied Energy, Elsevier, vol. 377(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    2. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    3. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    4. Zhang, Zhengjie & Cao, Rui & Zheng, Yifan & Zhang, Lisheng & Guang, Haoran & Liu, Xinhua & Gao, Xinlei & Yang, Shichun, 2024. "Online state of health estimation for lithium-ion batteries based on gene expression programming," Energy, Elsevier, vol. 294(C).
    5. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    6. Ge, Dongdong & Jin, Guiyang & Wang, Jianqiang & Zhang, Zhendong, 2024. "A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).
    7. Kumar, Vijay & Choudhary, Akhilesh Kumar, 2024. "Prediction of the Performance and emission characteristics of diesel engine using diphenylamine Antioxidant and ceria nanoparticle additives with biodiesel based on machine learning," Energy, Elsevier, vol. 301(C).
    8. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
    9. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    10. Zhang, Chaolong & Luo, Laijin & Yang, Zhong & Du, Bolun & Zhou, Ziheng & Wu, Ji & Chen, Liping, 2024. "Flexible method for estimating the state of health of lithium-ion batteries using partial charging segments," Energy, Elsevier, vol. 295(C).
    11. Zhang, Zhongbo & Yu, Wei & Yan, Zhiying & Zhu, Wenbo & Li, Haibing & Liu, Qin & Guan, Quanlong & Tan, Ning, 2025. "State of charge estimation of lithium-ion batteries using a fractional-order multi-dimensional Taylor network with adaptive Kalman filter," Energy, Elsevier, vol. 316(C).
    12. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
    13. Houssam Eddine Ghadbane & Ahmed F. Mohamed, 2025. "Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm," Mathematics, MDPI, vol. 13(9), pages 1-18, May.
    14. Shuai Zhang & Dong Guo & Bin Zhou & Chunyan Zheng & Zhiqin Li & Pengcheng Ma, 2025. "An Adaptive Electric Vehicle Charging Management Strategy for Multi-Level Travel Demands," Sustainability, MDPI, vol. 17(6), pages 1-48, March.
    15. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Li, Jian & Zhang, Hongguang & Yang, Fubin & Zhang, Jian & Li, Qi, 2025. "State of health estimation of lithium-ion batteries based on feature optimization and data-driven models," Energy, Elsevier, vol. 316(C).
    16. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    17. Huang, Kai & Yao, Kaixin & Guo, Yongfang & Lv, Ziteng, 2023. "State of health estimation of lithium-ion batteries based on fine-tuning or rebuilding transfer learning strategies combined with new features mining," Energy, Elsevier, vol. 282(C).
    18. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    19. Zhang, Yuan & Li, Yifan & Tian, Zhen & Yang, Chao & Peng, Hao & Kan, Ankang & Gao, Wenzhong, 2025. "Thermodynamic performance prediction and optimization of a 1 kW ocean thermal energy cogeneration system based on artificial neural network," Energy, Elsevier, vol. 314(C).
    20. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4014-:d:1645773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.