IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2501-d1610842.html
   My bibliography  Save this article

An Adaptive Electric Vehicle Charging Management Strategy for Multi-Level Travel Demands

Author

Listed:
  • Shuai Zhang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Dong Guo

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Bin Zhou

    (State Key Laboratory of Intelligent Transportation System, Beijing 100088, China)

  • Chunyan Zheng

    (School of Management, Shandong University of Technology, Zibo 255000, China)

  • Zhiqin Li

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Pengcheng Ma

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

As the adoption of electric vehicles (EVs) continues to rise, the pressure on charging station resources has intensified, particularly under high-load conditions, where limited charging infrastructure struggles to meet the growing demand. Issues such as uneven resource allocation, prolonged charging wait times, fairness concerns among different user groups, and inefficient scheduling strategies have significantly impacted the overall operational efficiency of charging infrastructure and the user experience. Against this backdrop, the effective management of charging infrastructure has become increasingly critical, especially in balancing the diverse mobility needs and service expectations of users. Traditional charging scheduling methods often rely on static or rule-based strategies, which lack the flexibility to adapt to dynamic load environments. This rigidity hinders optimal resource allocation, leading to low charging pile utilization and reduced charging efficiency for users. To address this, we propose an Adaptive Charging Priority (ACP) strategy aimed at enhancing charging resource utilization and improving user experience. The key innovations include (1) dynamic adjustment of priority parameters for optimized resource allocation; (2) a dynamic charging station reservation algorithm based on load status and user arrival rates to prioritize high-priority users; (3) a scheduling strategy for low-priority vehicles to minimize waiting times for non-reserved vehicles; and (4) integration of real-time data with the DDPDQN algorithm for dynamic resource allocation and user matching. Simulation results indicate that the ACP strategy outperforms the FIFS and RFWDA strategies under high-load conditions (High-priority vehicle arrival rate: 22 EV/h, random vehicle arrival rate: 13 EV/h, maximum parking duration: 1200 s). Specifically, the ACP strategy reduces charging wait times by 96 s and 28 s, respectively, and charging journey times by 452 s and 73 s. Additionally, charging station utilization increases by 19.5% and 11.3%. For reserved vehicles, the ACP strategy reduces waiting times and journey times by 27 s and 188 s, respectively, while increasing the number of fully charged vehicles by 104. For non-reserved vehicles, waiting and journey times decrease by 213 s and 218 s, respectively, with a 75 s increase in fully charged vehicles. Overall, the ACP strategy outperforms traditional methods across several key metrics, demonstrating its advantages in resource optimization and scheduling.

Suggested Citation

  • Shuai Zhang & Dong Guo & Bin Zhou & Chunyan Zheng & Zhiqin Li & Pengcheng Ma, 2025. "An Adaptive Electric Vehicle Charging Management Strategy for Multi-Level Travel Demands," Sustainability, MDPI, vol. 17(6), pages 1-48, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2501-:d:1610842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    2. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Xiaoxiao Shen & Jun Lv & Shichang Du & Yafei Deng & Molin Liu & Yulu Zhou, 2024. "Integrated optimization of electric vehicles charging location and allocation for valet charging service," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1080-1106, September.
    4. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    5. Liu, Zhe & Song, Juhyun & Kubal, Joseph & Susarla, Naresh & Knehr, Kevin W. & Islam, Ehsan & Nelson, Paul & Ahmed, Shabbir, 2021. "Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles," Energy Policy, Elsevier, vol. 158(C).
    6. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    7. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
    2. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    3. Kumar, Vijay & Choudhary, Akhilesh Kumar, 2024. "Prediction of the Performance and emission characteristics of diesel engine using diphenylamine Antioxidant and ceria nanoparticle additives with biodiesel based on machine learning," Energy, Elsevier, vol. 301(C).
    4. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    5. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Poria Astero & Bong Jun Choi & Hao Liang & Lennart Söder, 2017. "Transactive Demand Side Management Programs in Smart Grids with High Penetration of EVs," Energies, MDPI, vol. 10(10), pages 1-18, October.
    7. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    8. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    9. Mandys, Filip & Taneja, Shivani, 2024. "Demand for green and fossil fuel automobiles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    10. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    11. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Zeng, Xiaoyong & Sun, Yaoke & Xia, Xiangyang & Chen, Laien, 2025. "A framework for joint SOC and SOH estimation of lithium-ion battery: Eliminating the dependency on initial states," Applied Energy, Elsevier, vol. 377(PD).
    13. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
    14. Bünning, Felix & Sangi, Roozbeh & Müller, Dirk, 2017. "A Modelica library for the agent-based control of building energy systems," Applied Energy, Elsevier, vol. 193(C), pages 52-59.
    15. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2024. "Free-ridership in subsidies for company- and private electric vehicles," Energy Economics, Elsevier, vol. 131(C).
    16. Tobias Rodemann & Tom Eckhardt & René Unger & Torsten Schwan, 2019. "Using Agent-Based Customer Modeling for the Evaluation of EV Charging Systems," Energies, MDPI, vol. 12(15), pages 1-16, July.
    17. Jeon, Deok Hwan & Cho, Jae Yong & Jhun, Jeong Pil & Ahn, Jung Hwan & Jeong, Sinwoo & Jeong, Se Yeong & Kumar, Anuruddh & Ryu, Chul Hee & Hwang, Wonseop & Park, Hansun & Chang, Cheulho & Lee, Hyoungjin, 2021. "A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road," Energy, Elsevier, vol. 218(C).
    18. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    19. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    20. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2501-:d:1610842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.