IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16797-d1003647.html
   My bibliography  Save this article

Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid

Author

Listed:
  • Jianxin Qin

    (Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha 410081, China
    School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
    These authors contributed equally to this work.)

  • Jing Qiu

    (Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha 410081, China
    School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
    These authors contributed equally to this work.)

  • Yating Chen

    (State Grid Information & Communication Company of Hunan Electric Power Corporation, Changsha 410004, China)

  • Tao Wu

    (Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha 410081, China
    School of Geographic Sciences, Hunan Normal University, Changsha 410081, China)

  • Longgang Xiang

    (State Key Laboratory of LIESMARS, Wuhan University, Wuhan 430079, China)

Abstract

Electric vehicles (EVs) have attracted considerable attention because of their clean and high-energy efficiency. Reasonably planning a charging station network has become a vital issue for the popularization of EVs. Current research on optimizing charging station networks focuses on the role of stations in a local scope. However, spatial features between charging stations are not considered. This paper proposes a charging station selection method based on the graph convolutional network (GCN) and establishes a charging station selection method considering traffic information and investment cost. The method uses the GCN to extract charging stations. The charging demand of each candidate station is calculated through the traffic flow information to optimize the location of charging stations. Finally, the cost of the charging station network is evaluated. A case study on charging station selection shows that the method can solve the EV charging station location problem.

Suggested Citation

  • Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16797-:d:1003647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    2. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
    4. Quddus, Md Abdul & Kabli, Mohannad & Marufuzzaman, Mohammad, 2019. "Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 251-279.
    5. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    6. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    7. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Ziyue & Han, Jingzuo & Li, Yetong & Chen, Xinyu & Peng, Tianduo & Xiong, Jianliang & Shu, Zhan, 2023. "Charging station layout planning for electric vehicles based on power system flexibility requirements," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    4. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    5. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    6. Li, Jiapei & Xie, Chi, 2024. "Identifying and minimizing critical driving range thresholds for electric vehicles in intercity networks," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    7. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    8. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    9. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    10. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    11. Xie, Fei & Lin, Zhenhong, 2021. "Integrated U.S. nationwide corridor charging infrastructure planning for mass electrification of inter-city trips," Applied Energy, Elsevier, vol. 298(C).
    12. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    13. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    14. Schmidt, Marc & Staudt, Philipp & Weinhardt, Christof, 2020. "Evaluating the importance and impact of user behavior on public destination charging of electric vehicles," Applied Energy, Elsevier, vol. 258(C).
    15. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    16. Zhang, Yaoli & Liu, Xingyu & Wei, Wenshen & Peng, Tianji & Hong, Gang & Meng, Chao, 2020. "Mobile charging: A novel charging system for electric vehicles in urban areas," Applied Energy, Elsevier, vol. 278(C).
    17. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    18. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    19. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    20. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16797-:d:1003647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.