IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v119y2019icp224-237.html
   My bibliography  Save this article

A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore

Author

Listed:
  • Wang, Hua
  • Zhao, De
  • Meng, Qiang
  • Ong, Ghim Ping
  • Lee, Der-Horng

Abstract

In the recent decade, electric vehicles (EVs), as a clean and cost-effective transport means, are paving the way to replace conventional gasoline vehicles. To facilitate wider adoption of EVs, corresponding charging infrastructures have to be established first. In this paper, we propose a four-step method to deploy normal and fast charging stations that can satisfy the charging demand of private EVs, 1-shift and 2-shift EV taxis in a mature city. The proposed four-step method provides an easy-to-implement procedure for charging demand estimation and distribution. First, we derive the charging frequency and type of charging facilities for each type of EVs based on their technical specifications and operational characteristics. Then, total demand for normal and fast charging facilities can be generated by using up-to-date transport statistics, and these demand is allocated to various charging sites (car parks or petrol stations) based on spatial distribution of EVs. Given the average daily engaged working hours of a charger, service capacity at each charging station is thus determined. A case study of Singapore is put forward in the end and a scenario analysis is conducted to demonstrate the impact of driving range.

Suggested Citation

  • Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
  • Handle: RePEc:eee:transa:v:119:y:2019:i:c:p:224-237
    DOI: 10.1016/j.tra.2018.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418309169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    2. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    3. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    4. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    5. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    6. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    7. Xu, Min & Meng, Qiang & Liu, Kai, 2017. "Network user equilibrium problems for the mixed battery electric vehicles and gasoline vehicles subject to battery swapping stations and road grade constraints," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 138-166.
    8. Xie, Fei & Liu, Changzheng & Li, Shengyin & Lin, Zhenhong & Huang, Yongxi, 2018. "Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 261-276.
    9. Nozick, L. K., 2001. "The fixed charge facility location problem with coverage restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(4), pages 281-296, August.
    10. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    11. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    12. Querini, Florent & Benetto, Enrico, 2014. "Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 149-161.
    13. Chen, Zhibin & He, Fang & Yin, Yafeng, 2016. "Optimal deployment of charging lanes for electric vehicles in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 344-365.
    14. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    15. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    16. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    17. Asamer, Johannes & Reinthaler, Martin & Ruthmair, Mario & Straub, Markus & Puchinger, Jakob, 2016. "Optimizing charging station locations for urban taxi providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 233-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    2. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Bolong Yun & Daniel (Jian) Sun & Yingjie Zhang & Siwen Deng & Jing Xiong, 2019. "A Charging Location Choice Model for Plug-In Hybrid Electric Vehicle Users," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    5. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    6. Wang, Hua & Meng, Qiang & Wang, Jing & Zhao, De, 2021. "An electric-vehicle corridor model in a dense city with applications to charging location and traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 79-99.
    7. Luis Oliveira & Arun Ulahannan & Matthew Knight & Stewart Birrell, 2020. "Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    8. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    9. Yongzhong Wu & Siyi Zhuge & Guoxin Han & Wei Xie, 2022. "Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis," Energies, MDPI, vol. 15(5), pages 1-18, February.
    10. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    11. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Carrese, Stefano & D'Andreagiovanni, Fabio & Giacchetti, Tommaso & Nardin, Antonella & Zamberlan, Leonardo, 2021. "An optimization model and genetic-based matheuristic for parking slot rent optimization to carsharing," Research in Transportation Economics, Elsevier, vol. 85(C).
    13. Zhou, Min & Long, Piao & Kong, Nan & Zhao, Lindu & Jia, Fu & Campy, Kathryn S., 2021. "Characterizing the motivational mechanism behind taxi driver’s adoption of electric vehicles for living: Insights from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 134-152.
    14. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    15. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    16. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    17. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    18. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    19. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    20. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    2. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    3. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    4. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    7. Cilio, Luca & Babacan, Oytun, 2021. "Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets," Applied Energy, Elsevier, vol. 295(C).
    8. Shaohua Cui & Hui Zhao & Huijie Wen & Cuiping Zhang, 2018. "Locating Multiple Size and Multiple Type of Charging Station for Battery Electricity Vehicles," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    9. Cen, Xuekai & Lo, Hong K. & Li, Lu & Lee, Enoch, 2018. "Modeling electric vehicles adoption for urban commute trips," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 431-454.
    10. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    11. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    12. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    13. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    14. Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
    15. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    16. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    17. Schwerdfeger, Stefan & Bock, Stefan & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing the electrification of roads with charge-while-drive technology," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1111-1127.
    18. Mubarak, Mamdouh & Üster, Halit & Abdelghany, Khaled & Khodayar, Mohammad, 2021. "Strategic network design and analysis for in-motion wireless charging of electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    19. Shaohua Cui & Hui Zhao & Cuiping Zhang, 2018. "Locating Charging Stations of Various Sizes with Different Numbers of Chargers for Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-22, November.
    20. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:119:y:2019:i:c:p:224-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.