IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v186y2024ics0191261524001231.html
   My bibliography  Save this article

Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics

Author

Listed:
  • Mahmutoğulları, Özlem
  • Yaman, Hande

Abstract

The refueling station location problem with routing considers vehicles’ ranges and drivers’ preferences about their routes to improve the alternative fuel station infrastructure. Comprehensive planning is necessary for developing a mature infrastructure to overcome budgetary constraints and spatial limitations. Hence, adopting a multi-period planning approach becomes crucial when taking into account the evolving demand for alternative fuel vehicles over time. The evolution of demand can be dependent on exogenous and endogenous factors. Although it is typical to account for exogenous demand growth in multi-period planning, a few studies also take into account an endogenous factor which is the refueling opportunity of drivers on their paths. In this study, in addition to the refueling opportunities, we consider the proximity of each individual station to the flow-based demands. We draw attention to the significance of considering the effects of individual station locations on demand evolution, as these strategic locations can play an important role in reducing the drivers’ range anxiety and increasing their acceptance of the technology. Hence, we introduce a multi-period alternative fuel refueling station location problem with routing under different vehicle flow evolution dynamics that employ various weights for the factors where the natural growth rate is exogenous and the decisions of station locations and flow coverage are endogenous to the problem. We propose three mixed integer linear programming formulations for different evolution dynamics. We carry out computational experiments on the real road networks of Belgium, California, and Turkey and present our findings on the performances of the proposed mathematical models and the gains that can be obtained by considering multi-period planning and incorporating the effects of decisions into the vehicle flow evolution.

Suggested Citation

  • Mahmutoğulları, Özlem & Yaman, Hande, 2024. "Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001231
    DOI: 10.1016/j.trb.2024.102999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    3. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    4. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    5. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    6. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    7. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    8. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    9. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    10. de Vries, Harwin & Duijzer, Evelot, 2017. "Incorporating driving range variability in network design for refueling facilities," Omega, Elsevier, vol. 69(C), pages 102-114.
    11. Kelley, Scott & Krafft, Aimee & Kuby, Michael & Lopez, Oscar & Stotts, Rhian & Liu, Jingteng, 2020. "How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California," Journal of Transport Geography, Elsevier, vol. 89(C).
    12. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    13. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    14. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    15. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    16. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    17. Ismail Capar & Michael Kuby, 2012. "An efficient formulation of the flow refueling location model for alternative-fuel stations," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 622-636.
    18. Okan Arslan & Oya Ekin Karaşan & Ridha Mahjoub & Hande Yaman, 2019. "A Branch-and-Cut Algorithm for the Alternative Fuel Refueling Station Location Problem with Routing," Transportation Science, INFORMS, vol. 53(4), pages 1107-1125, July.
    19. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    2. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    3. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    4. Park, Hyunwoo & Lee, Chungmok, 2024. "An exact algorithm for maximum electric vehicle flow coverage problem with heterogeneous chargers, nonlinear charging time and route deviations," European Journal of Operational Research, Elsevier, vol. 315(3), pages 926-951.
    5. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    6. Göpfert, Paul & Bock, Stefan, 2019. "A Branch&Cut approach to recharging and refueling infrastructure planning," European Journal of Operational Research, Elsevier, vol. 279(3), pages 808-823.
    7. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    8. Li, Lei & Al Chami, Zaher & Manier, Hervé & Manier, Marie-Ange & Xue, Jian, 2021. "Incorporating fuel delivery in network design for hydrogen fueling stations: Formulation and two metaheuristic approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    10. Rabl, Regina & Reuter-Oppermann, Melanie & Jochem, Patrick E.P., 2024. "Charging infrastructure for electric vehicles in New Zealand," Transport Policy, Elsevier, vol. 148(C), pages 124-144.
    11. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    12. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    13. Kazemi, Ahmad & Ernst, Andreas T. & Krishnamoorthy, Mohan & Le Bodic, Pierre, 2021. "Locomotive fuel management with inline refueling," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1077-1096.
    14. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    15. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    16. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    17. Lin, Cheng-Chang & Lin, Chuan-Chih, 2018. "The p-center flow-refueling facility location problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 124-142.
    18. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    19. Tran, Trung Hieu & Nagy, Gábor & Nguyen, Thu Ba T. & Wassan, Niaz A., 2018. "An efficient heuristic algorithm for the alternative-fuel station location problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 159-170.
    20. Luyun Wang & Bo Zhou, 2023. "Optimal Planning of Electric Vehicle Fast-Charging Stations Considering Uncertain Charging Demands via Dantzig–Wolfe Decomposition," Sustainability, MDPI, vol. 15(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.