IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001151.html
   My bibliography  Save this article

Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors

Author

Listed:
  • Sheng, Wenjuan
  • Wang, Junkai
  • Peng, G.D.

Abstract

The accurate estimation of the state of charge (SOC) is essential to guarantee the safe and reliable operation of battery systems. Recently, more and more studies and applications have adopted optic fiber sensors to aid SOC estimation. However, it faces challenges such as limited performance and high costs. To address these challenges, this work proposed using a novel multi-position strain to enhance strain assistance for SOC estimation. Three fiber Bragg grating (FBG) sensors are arranged near the negative electrode, near the positive electrode, and in the middle of the battery, respectively. Strains at multiple positions are utilized as input features for the SOC estimation model, either individually, in dual combination, or triple combination. The impact of the number and placement of FBG sensors on SOC estimation is assessed. Temporal Convolutional Network (TCN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU) were employed to evaluate the effectiveness of multi-position strain. Furthermore, an FBG demodulation system based on a tunable Fabry-Perot (FP) filter was built to obtain strain information from wavelength signals. Compared to the commercially demodulation systems, the proposed demodulation system achieves a cost reduction of over 90 %. Experimental results verify that, compared to a traditional single strain, the dual strains significantly improve SOC estimation accuracy. In static tests, the root mean squared error (RMSE) and mean absolute error (MAE) are reduced by up to 73.66 % and 71.72 %, respectively. In dynamic tests, RMSE and MAE reductions reach up to 72.49 % and 74.01 %, respectively.

Suggested Citation

  • Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001151
    DOI: 10.1016/j.apenergy.2025.125385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Louli & A. Eldesoky & Rochelle Weber & M. Genovese & Matt Coon & Jack deGooyer & Zhe Deng & R. T. White & Jaehan Lee & Thomas Rodgers & R. Petibon & S. Hy & Shawn J. H. Cheng & J. R. Dahn, 2020. "Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis," Nature Energy, Nature, vol. 5(9), pages 693-702, September.
    2. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    3. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    4. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jiaqiang Huang & Steven T. Boles & Jean-Marie Tarascon, 2022. "Sensing as the key to battery lifetime and sustainability," Nature Sustainability, Nature, vol. 5(3), pages 194-204, March.
    6. Guo, Shanshan & Ma, Liang, 2023. "A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation," Energy, Elsevier, vol. 263(PC).
    7. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    9. Jiaqiang Huang & Laura Albero Blanquer & Julien Bonefacino & E. R. Logan & Daniel Alves Dalla Corte & Charles Delacourt & Betar M. Gallant & Steven T. Boles & J. R. Dahn & Hwa-Yaw Tam & Jean-Marie Tar, 2020. "Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors," Nature Energy, Nature, vol. 5(9), pages 674-683, September.
    10. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    11. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    12. Wenxin Mei & Zhi Liu & Chengdong Wang & Chuang Wu & Yubin Liu & Pengjie Liu & Xudong Xia & Xiaobin Xue & Xile Han & Jinhua Sun & Gaozhi Xiao & Hwa-yaw Tam & Jacques Albert & Qingsong Wang & Tuan Guo, 2023. "Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    14. Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
    15. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Fabian Duffner & Niklas Kronemeyer & Jens Tübke & Jens Leker & Martin Winter & Richard Schmuch, 2021. "Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure," Nature Energy, Nature, vol. 6(2), pages 123-134, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiahao & Chen, Jiadui & Liu, Dan & He, Ling & Yang, Kai & Du, Feilong & Ye, Wen & Zhang, Xiaoxiang, 2025. "Multi-state joint prediction algorithm for lithium battery packs based on data-driven and physical models," Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
    2. Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
    3. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    5. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
    6. Annabel Olgo & Sylvie Genies & Romain Franchi & Cédric Septet & Quentin Jacquet & Quentin Berrod & Rasmus Palm & Pascale Chenevier & Elise Villemin & Claire Villevieille & Nils Blanc & Samuel Tardif &, 2024. "Revealing how internal sensors in a smart battery impact the local graphite lithiation mechanism," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    9. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    10. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    11. Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
    12. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    13. Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
    14. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    15. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    16. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    17. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    18. Zhou, Yifei & Wang, Shunli & Feng, Renjun & Xie, Yanxin & Fernandez, Carlos, 2024. "Multi-temperature capable enhanced bidirectional long short term memory-multilayer perceptron hybrid model for lithium-ion battery SOC estimation," Energy, Elsevier, vol. 312(C).
    19. Uzair Khan & Mohd Tariq & Arif I. Sarwat, 2024. "Adaptive Remaining Capacity Estimator of Lithium-Ion Battery Using Genetic Algorithm-Tuned Random Forest Regressor Under Dynamic Thermal and Operational Environments," Energies, MDPI, vol. 17(22), pages 1-18, November.
    20. Zhang, Meng & Kang, Guoqing & Wu, Lifeng & Guan, Yong, 2022. "A method for capacity prediction of lithium-ion batteries under small sample conditions," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.