IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012836.html
   My bibliography  Save this article

Multi-state joint prediction algorithm for lithium battery packs based on data-driven and physical models

Author

Listed:
  • Zhang, Jiahao
  • Chen, Jiadui
  • Liu, Dan
  • He, Ling
  • Yang, Kai
  • Du, Feilong
  • Ye, Wen
  • Zhang, Xiaoxiang

Abstract

In the Industry 4.0 era, precise and efficient estimation of battery State of Health (SOH) and State of Charge (SOC) is essential for battery management systems. However, traditional SOC estimation methods often overlook the influence of battery health and internal physical characteristics, leading to inaccuracies in SOC estimation. To address this challenge, an innovative approach is proposed for the concurrent estimation of lithium battery pack states by seamlessly integrating data-driven and physical models. Initially, an automated aging matching model is established to capture inter-vehicle correlations and predict the target vehicle's capacity. SOC is then refined through a combination of the predicted capacity, the ampere-hour integration technique, and correction factors, ensuring high accuracy. Additionally, the physical model of lithium batteries is incorporated into the Channel-Spatial Attention-Gated Recurrent Unit (CSA-GRU) architecture, resulting in the considering physical information neural network (CPINN), specifically designed for SOC estimation. This approach effectively addresses the accuracy and interpretability issues commonly faced by data-driven methods in SOC estimation. Finally, the prediction accuracy, robustness, and real-time performance of the model are validated using electric bus battery data. Experimental results demonstrate that, compared to other models, the CPINN model offers superior accuracy, stability, and enriched information, along with enhanced interpretability.

Suggested Citation

  • Zhang, Jiahao & Chen, Jiadui & Liu, Dan & He, Ling & Yang, Kai & Du, Feilong & Ye, Wen & Zhang, Xiaoxiang, 2025. "Multi-state joint prediction algorithm for lithium battery packs based on data-driven and physical models," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012836
    DOI: 10.1016/j.energy.2025.135641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Tang, Aihua & Huang, Yukun & Xu, Yuchen & Hu, Yuanzhi & Yan, Fuwu & Tan, Yong & Jin, Xin & Yu, Quanqing, 2024. "Data-physics-driven estimation of battery state of charge and capacity," Energy, Elsevier, vol. 294(C).
    4. Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
    5. Xin Lai & Ming Yuan & Xiaopeng Tang & Yi Yao & Jiahui Weng & Furong Gao & Weiguo Ma & Yuejiu Zheng, 2022. "Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    6. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
    7. Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
    8. Shu, Xiong & Li, Yongjing & Wei, Kexiang & Yang, Wenxian & Yang, Bowen & Zhang, Ming, 2025. "Research on the output characteristics and SOC estimation method of lithium-ion batteries over a wide range of operating temperature conditions," Energy, Elsevier, vol. 317(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Aihua & Xu, Yuchen & Hu, Yuanzhi & Tian, Jinpeng & Nie, Yuwei & Yan, Fuwu & Tan, Yong & Yu, Quanqing, 2024. "Battery state of health estimation under dynamic operations with physics-driven deep learning," Applied Energy, Elsevier, vol. 370(C).
    2. Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
    3. Zhu, Tao & Wang, Shunli & Fan, Yongcun & Hai, Nan & Huang, Qi & Fernandez, Carlos, 2024. "An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition," Energy, Elsevier, vol. 306(C).
    4. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    5. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    6. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    7. Huang, Boyan & Li, Hongxu & Sun, Jiangbo & Sun, Jiawen & Tian, Xiaolong & Song, Kai & Zhang, Shuai & Wang, Zhen, 2025. "Robust SOC estimation for lithium-ion batteries: Combination of GRU and FOMIAUKF approach with an improved state transition matrix," Energy, Elsevier, vol. 328(C).
    8. Bingyu Sang & Zaijun Wu & Bo Yang & Junjie Wei & Youhong Wan, 2024. "Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter," Energies, MDPI, vol. 17(7), pages 1-16, March.
    9. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    10. Liu, Yanli & Wang, Junyi & Liu, Liqi, 2024. "Physics-informed reinforcement learning for probabilistic wind power forecasting under extreme events," Applied Energy, Elsevier, vol. 376(PA).
    11. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    12. Zhang, Jiarui & Mao, Lei & Liu, Zhongyong & Yu, Kun & Hu, Zhiyong, 2025. "A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states," Applied Energy, Elsevier, vol. 382(C).
    13. Liu, Kailong & Fang, Jingyang & Zhao, Shiwen & Liu, Yuhang & Dai, Haifeng & Ye, Liwang & Peng, Qiao, 2025. "Battery state-of-health estimation: An ultrasonic detection method with explainable AI," Energy, Elsevier, vol. 319(C).
    14. Huang, Yan-feng & Wu, Tao & Fei, Yue & Chen, Xing-ni & Xu, Bin, 2025. "Exploration of electrode structure optimization based on a heterogeneous electrode model: Analysis of polarization effect under the regulation of particle morphology," Energy, Elsevier, vol. 322(C).
    15. Han, Xuewei & Yuan, Huimei & Wu, Lifeng, 2025. "Kalman filter anomaly values processing meta-model ensemble learning framework for Lithium-ion battery capacity prediction," Energy, Elsevier, vol. 322(C).
    16. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    17. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    18. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
    19. Zeng, Yi & Li, Yan & Zhou, Zhongkai & Zhao, Daduan & Yang, Tong & Ren, Pu & Zhang, Chenghui, 2025. "Joint estimation of state of charge and health utilizing fractional-order square-root cubature Kalman filtering with order scheduling strategy," Energy, Elsevier, vol. 320(C).
    20. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.